2025届安徽省合肥三中数学高一上期末统考模拟试题含解析_第1页
2025届安徽省合肥三中数学高一上期末统考模拟试题含解析_第2页
2025届安徽省合肥三中数学高一上期末统考模拟试题含解析_第3页
2025届安徽省合肥三中数学高一上期末统考模拟试题含解析_第4页
2025届安徽省合肥三中数学高一上期末统考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届安徽省合肥三中数学高一上期末统考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线,与平行,则的值是()A0或1 B.1或C.0或 D.2.在正方体ABCD-A1B1C1D1中,异面直线AD1和B1C所成的角是()A. B.C. D.3.若,,则sin=A. B.C. D.4.已知,,则的值为A. B.C. D.5.已知集合,,,则实数a的取值集合为()A. B.C. D.6.若,是第二象限的角,则的值等于()A. B.7C. D.-77.已知,则的最小值是()A.5 B.6C.7 D.88.设函数的最小正周期为,且在内恰有3个零点,则的取值范围是()A. B.C. D.9.四面体中,各个侧面都是边长为的正三角形,分别是和的中点,则异面直线与所成的角等于()A.30° B.45°C.60° D.90°10.已知,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.____.12.已知,,,则有最大值为__________13.已知函数,则函数f(x)的值域为______.14.函数的递减区间是__________.15.函数在上存在零点,则实数a的取值范围是______16.经过点,且在轴上的截距等于在轴上的截距的2倍的直线的方程是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的部分图象如图所示(1)求函数的解析式:(2)将函数的图象上所有的点向右平移个单位,再将所得图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得到函数的图象①当时,求函数的值域;②若方程在上有三个不相等的实数根,求的值18.如图,甲、乙是边长为4a的两块正方形钢板,现要将甲裁剪焊接成一个正四棱柱,将乙裁剪焊接成一个正四棱锥,使它们的全面积都等于一个正方形的面积(不计焊接缝的面积)(1)将你的裁剪方法用虚线标示在图中,并作简要说明;(2)试比较你所制作的正四棱柱与正四棱锥体积的大小,并证明你的结论19.已知函数f(x)=2asin+b的定义域为,函数最大值为1,最小值为-5,求a和b的值20.已知函数(且)为奇函数.(1)求n的值;(2)若,判断函数在区间上的单调性并用定义证明;(3)在(2)的条件下证明:当时,.21.已知函数(1)若,求不等式的解集;(2)若,且,求的最小值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由题意得:或,故选C.考点:直线平行的充要条件2、D【解析】正方体ABCD-A1B1C1D1的面对角线AD1和面对角线DA1所成的角就是异面直线AD1和B1C所成的角,利用正方体的性质即得【详解】由正方体的性质可知,,∴四边形为平行四边形,∴DA1∥B1C,∴正方体ABCD-A1B1C1D1的面对角线AD1和面对角线DA1所成的角就是异面直线AD1和B1C所成的角,∵四边形ADD1A1正方形,∴直线AD1和DA1垂直,∴异面直线AD1和B1C所成的角是90°故选:D3、B【解析】因为,,所以sin==,故选B考点:本题主要考查三角函数倍半公式的应用点评:简单题,注意角的范围4、A【解析】根据角的范围可知,;利用同角三角函数的平方关系和商数关系构造方程可求得结果.【详解】由可知:,由得:本题正确选项:【点睛】本题考查同角三角函数值的求解,关键是能够熟练掌握同角三角函数的平方关系和商数关系,易错点是忽略角的范围造成函数值符号错误.5、C【解析】先解出集合A,再根据确定集合B的元素,可得答案.【详解】由题意得,,∵,,∴实数a的取值集合为,故选:C.6、B【解析】先由同角三角函数关系式求出,再利用两角差的正切公式即可求解.【详解】因为,是第二象限的角,所以,所以.所以.故选:B7、C【解析】,根据结合基本不等式即可得出答案.【详解】解:,因为,又,所以,则,当且仅当,即时,取等号,即的最小值是7.故选:C8、D【解析】根据周期求出,结合的范围及,得到,把看做一个整体,研究在的零点,结合的零点个数,最终列出关于的不等式组,求得的取值范围【详解】因为,所以.由,得.当时,,又,则因为在上的零点为,,,,且在内恰有3个零点,所以或解得.故选:D9、B【解析】利用中位线定理可得GE∥SA,则∠GEF为异面直线EF与SA所成的角,判断三角形为等腰直角三角形即可.【详解】取AC中点G,连接EG,GF,FC设棱长为2,则CF=,而CE=1∴EF=,GE=1,GF=1而GE∥SA,∴∠GEF为异面直线EF与SA所成的角∵EF=,GE=1,GF=1∴△GEF为等腰直角三角形,故∠GEF=45°故选:B.【点睛】求异面直线所成的角先要利用三角形中位线定理以及平行四边形找到异面直线所成的角,然后利用直角三角形的性质及余弦定理求解,如果利用余弦定理求余弦,因为异面直线所成的角是直角或锐角,所以最后结果一定要取绝对值.10、C【解析】先对两边平方,构造齐次式进而求出或,再用正切的二倍角公式即可求解.【详解】解:对两边平方得,进一步整理可得,解得或,于是故选:C【点睛】本题考查同角三角函数关系和正切的二倍角公式,考查运算能力,是中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】本题直接运算即可得到答案.【详解】解:,故答案为:.【点睛】本题考查指数幂的运算、对数的运算,是基础题.12、4【解析】分析:直接利用基本不等式求xy的最大值.详解:因为x+y=4,所以4≥,所以故答案为4.点睛:(1)本题主要考查基本不等式,意在考查学生对该基础知识的掌握水平.(2)利用基本不等式求最值时,一定要注意“一正二定三相等”,三者缺一不可.13、【解析】求函数的导数利用函数的单调性求值域即可.【详解】解:函数,,由,解得,此时函数单调递增由,解得,此时函数单调递减函数的最小值为(2),(1),(5)最大值为(5),,即函数的值域为:.故答案为.【点睛】本题主要考查函数的值域的求法,利用导数研究函数的单调性是解决本题的关键,属于基础题.14、【解析】先求出函数的定义域,再根据复合函数单调性“同增异减”原则求出函数的单调递减区间即可得出答案【详解】解:意可知,解得,所以的定义域是,令,对称轴是,在上是增函数,在是减函数,又在定义域上是增函数,是和的复合函数,的单调递减区间是,故答案为:【点睛】本题主要考查对数型复合函数的单调区间,属于基础题15、【解析】由可得,求出在上的值域,则实数a的取值范围可求【详解】由,得,即由,得,又∵函数在上存在零点,即实数a的取值范围是故答案为【点睛】本题考查函数零点的判定,考查函数值域的求法,是基础题16、或【解析】设所求直线方程为,将点代入上式可得或.考点:直线的方程三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)①;②.【解析】(1)由图象得A、B、,再代入点,求解可得函数的解析式;(2)①由已知得,由求得,继而求得函数的值域;②令,,做出函数的图象,设有三个不同的实数根,有,,继而得,由此可得答案.【小问1详解】解:由图示得:,又,所以,所以,所以,又因为过点,所以,即,所以,解得,又,所以,所以;【小问2详解】解①:由已知得,当时,,所以,所以,所以,所以函数的值域为;②当时,,令,则,令,则函数的图象如下图所示,且,,,由图象得有三个不同的实数根,则,,所以,即,所以,所以,故.18、(1)见解析(2)正四棱柱的体积比正四棱锥的体积大【解析】1该四棱柱的底面为正方体,侧棱垂直底面,可知其由两个一样的正方形和四个完全相同的长方形组成,对图形进行切割,画出图形即可,画法不唯一;2正四棱柱的底面边长为2a,高为a,正四棱锥的底面边长为2a,高为h=(3a)解析:(1)将正方形甲按图中虚线剪开,以两个正方形为底面,四个长方形为侧面,焊接成一个底面边长为2a,高为a的正四棱柱将正方形乙按图中虚线剪开,以两个长方形焊接成边长为2a的正方形为底面,三个等腰三角形为侧面,两个直角三角形合拼成为一侧面,焊接成一个底面板长为2a,斜高为3a的正四棱锥(2)∵正四棱柱的底面边长为2a,高为a,∴其体积V1又∵正四棱锥的底面边长为2a,高为h=(3a)∴其体积V∵42即4>823,4故所制作的正四棱柱的体积比正四棱锥的体积大(说明:裁剪方式不唯一,计算的体积也不一定相等)点睛:本题考查了四棱锥和四棱柱的知识,需要掌握二者的特征以及其体积的求法,对于图形进行分割,画出图形即可,注意画法不唯一,结合体积公式求得体积,然后比较大小即完成解答19、a=12-6,b=-23+12,或a=-12+6,b=19-12.【解析】∵0≤x≤,∴-≤2x-≤.∴-≤sin≤1.若a>0,则,解得,若a<0,则,解得,综上可知,a=12-6,b=-23+12,或a=-12+6,b=19-12.20、(1);(2)在上单调递增,证明见解析;(3)证明见解析.【解析】(1)由奇函数的定义可得,然后可得,进而计算得出n的值;(2)由可得,则,然后利用定义证明函数单调性即可;(3)由(2)知,先可证得,又,可证得,最后得出结论即可.【详解】(1)函数定义域为,且为奇函数,所以有,即,整理得,由条件可得,所以,即;(2)由,得,此时,任取,且,则,因为,所以,,,所以,则,所以,即,所以函数在上单调递增;(3)由(2)知,函数在上单调递增,当时,,又,从而,又,而当时,,,所以,综上,当时,.【点睛】方法点睛:利用定义证明函数单调性的步骤:①取值,②作差、变形(变形主要指通分、因式分解、合并同类项等),③定号,④判断.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论