北京市昌平区2025届高一上数学期末学业水平测试试题含解析_第1页
北京市昌平区2025届高一上数学期末学业水平测试试题含解析_第2页
北京市昌平区2025届高一上数学期末学业水平测试试题含解析_第3页
北京市昌平区2025届高一上数学期末学业水平测试试题含解析_第4页
北京市昌平区2025届高一上数学期末学业水平测试试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市昌平区2025届高一上数学期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=13A.-13C.-222.函数的定义域为()A.(-∞,4) B.[4,+∞)C.(-∞,4] D.(-∞,1)∪(1,4]3.天文学中为了衡量天体的明暗程度,古希腊天文学家喜帕恰斯(,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,天体就越亮;星等的数值越大,天体就越暗.到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森()又提出了衡量天体明暗程度的亮度的概念.天体的明暗程度可以用星等或亮度来描述,两颗星的星等与亮度满足(),其中星等为的星的亮度为(,2).已知“心宿二”的星等是1.00,“天津四”的星等是1.25,“心宿二”的亮度是“天津四”的倍,则的近似值为(当较小时,)()A1.23 B.1.26C.1.51 D.1.574.已知与分别是函数与的零点,则的值为A. B.C.4 D.55.已知函数为偶函数,且在上单调递减,则的解集为A. B.C. D.6.给出下列命题:①第二象限角大于第一象限角;②不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;③若,则与的终边相同;④若,是第二或第三象限的角.其中正确的命题个数是()A.1 B.2C.3 D.47.已知函数和,则下列结论正确的是A.两个函数的图象关于点成中心对称图形B.两个函数的图象关于直线成轴对称图形C.两个函数的最小正周期相同D.两个函数在区间上都是单调增函数8.已知全集,集合,,它们的关系如图(Venn图)所示,则阴影部分表示的集合为()A. B.C. D.9.集合中所含元素为A.0,1 B.,1C.,0 D.110.函数的最小正周期是()A. B.C. D.3二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,则的值为___________.12.“”是“”的______条件(请从“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”中选择一个填)13.已知为偶函数,当时,,当时,,则不等式的解集为__________14.已知函数,将函数图象上各点的横坐标缩短到原来的倍(纵坐标不变),再将得到的图象向右平移个单位,得到函数的解析式______15.一个扇形周长为8,则扇形面积最大时,圆心角的弧度数是__________.16.如下图所示的正四棱台的上底面边长为2,下底面边长为8,高为32三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知全集,若集合,.(1)若,求;(2)若,求实数的取值范围.18.已知二次函数,满足,.(1)求函数的解析式;(2)求在区间上的值域.19.已知函数(且)的图象过点.(1)求函数的解析式;(2)解不等式.20.已知函数为偶函数.(1)求的值;(2)若恒成立,求实数的取值范围.21.已知向量,,设函数Ⅰ求函数的最小正周期和单调递增区间;Ⅱ求函数在区间的最大值和最小值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据终边关于y轴对称可得关系α+β=π+2kπ,k∈Z,再利用诱导公式,即可得答案;【详解】在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,∴α+β=π+2kπ,k∈Z,∵sinα=∴sin故选:B.【点睛】本题考查角的概念和诱导公式的应用,考查逻辑推理能力、运算求解能力.2、D【解析】根据函数式的性质可得,即可得定义域;【详解】根据的解析式,有:解之得:且;故选:D【点睛】本题考查了具体函数定义域的求法,属于简单题;3、B【解析】根据题意列出方程,结合对数式与指数式的互化以及对数运算性质即可求解.【详解】设“心宿二”的星等为,“天津四”的星等为,“心宿二”和“天津四”的亮度分别为,,,,,所以,所以,所以,所以与最接近的是1.26,故选:B.4、D【解析】设,,由,互为反函数,其图象关于直线对称,作直线,分别交,的图象为A,B两点,点为A,B的中点,联立方程得,由中点坐标公式得:,又,故得解【详解】解:由,化简得,设,,由,互为反函数,其图象关于直线对称,作直线,分别交,的图象为A,B两点,点为A,B的中点,联立得;,由中点坐标公式得:,所以,故选D【点睛】本题考查了反函数、中点坐标公式及函数的零点等知识,属于难题.5、B【解析】根据为偶函数,可得;根据在上递减得;然后解一元二次不等式可得【详解】解:为偶函数,所以,即,,由在上单调递减,所以,,可化为,即,解得或故选:【点睛】本题主要考查奇偶性与单调性的应用以及一元二次不等式的解法,还考查了运算求解的能力,属于中档题.6、A【解析】根据题意,对题目中的命题进行分析,判断正误即可.【详解】对于①,根据任意角的概念知,第二象限角不一定大于第一象限角,①错误;对于②,根据角的定义知,不论用角度制还是用弧度制度量一个角,它们与扇形所对半径的大小无关,②正确;对于③,若,则与的终边相同,或关于轴对称,③错误;对于④,若,则是第二或第三象限的角,或终边在负半轴上,④错误;综上,其中正确命题是②,只有个.故选:【点睛】本题考查真假命题的判断,考查三角函数概念,属于基础题.7、D【解析】由题意得选项A中,由于的图象关于点成中心对称,的图象不关于点成中心对称,故A不正确选项B中,由于函数的图象关于点成中心对称,的图象关于直线成轴对称图形,故B不正确选项C中,由于的周期为2π,的周期为π,故C不正确选项D中,两个函数在区间上都是单调递增函数,故D正确选D8、C【解析】根据所给关系图(Venn图),可知是求,由此可求得答案.【详解】根据题意可知,阴影部分表示的是,故,故选:C.9、A【解析】,解,得,故选10、A【解析】根据解析式,由正切函数的性质求最小正周期即可.【详解】由解析式及正切函数的性质,最小正周期.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用和角正弦公式、差角余弦公式及同角商数关系,将目标式化为即可求值.【详解】.故答案为:.12、必要不充分【解析】根据充分条件、必要条件的定义结合余弦函数的性质可得答案.【详解】当时,可得由,不能得到例如:取时,,也满足所以由,可得成立,反之不成立“”是“”的必要不充分条件故答案为:必要不充分13、【解析】求出不等式在的解,然后根据偶函数的性质可得出不等式在上的解集.【详解】当时,令,可得,解得,此时;当时,令,解得,此时.所以,不等式在的解为.由于函数为偶函数,因此,不等式的解集为.故答案为:.【点睛】本题考查分段函数不等式的求解,同时也涉及了函数奇偶性的应用,考查运算求解能力,属于中等题.14、【解析】根据三角函数图象的变换可得答案.【详解】将函数图象上各点的横坐标缩短到原来的倍,得,再将得到的图象向右平移个单位得故答案为:15、2【解析】设扇形的半径为,则弧长为,结合面积公式计算面积取得最大值时的取值,再用圆心角公式即可得弧度数【详解】设扇形的半径为,则弧长为,,所以当时取得最大值为4,此时,圆心角为(弧度)故答案为:216、6【解析】如下图所示,O'B'=2,OM=2三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用集合的交集及补集的定义直接求解即可;(2)由可得,利用集合的包含关系求解即可.【详解】(1)当时,,所以,因为,所以;(2)由得,,所以【点睛】本题主要考查了集合的运算及包含关系求参,属于基础题.18、(1)(2)【解析】(1)由可得,由可得出关于、的方程组,解出这两个未知数的值,可得出函数的解析式;(2)由二次函数的基本性质可求得函数在区间上的值域.【小问1详解】解:由可得,,由得,所以,解得,所以.【小问2详解】解:由(1)可得:,则的图象的对称轴方程为,,又因为,,所以,在区间上的值域为.19、(1)(2)【解析】(1)把已知点的坐标代入求解即可;(2)直接利用函数单调性即可求出结论,注意真数大于0的这一隐含条件【小问1详解】因为函数(且)的图象过点.,所以,即;【小问2详解】因为单调递增,所以,即不等式的解集是20、(1)(2)或【解析】(1)根据奇偶函数的定义可得,列出方程,结合对数运算公式解方程即可;(2)根据指数、对数函数的性质求出函数,进而得到,解不等式即可.【小问1详解】∵是偶函数,∴,即,∴【小问2详解】由(1)知,∴又由解得,∴当且仅当x=0时等号成立,∴∴又∵恒成立,∴∴m≤-1或m≥321、(Ⅰ)最小正周期是,增区间为,;(Ⅱ)最大值为5,最小值为4【解析】Ⅰ根据向量数量积,利用二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数化为,利用正弦函数的周期公式可得函数的周期,利用正弦函数的单调性解不等式,可得到函数的递增区间;Ⅱ根据的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论