2025届山东省新泰二中高二上数学期末教学质量检测模拟试题含解析_第1页
2025届山东省新泰二中高二上数学期末教学质量检测模拟试题含解析_第2页
2025届山东省新泰二中高二上数学期末教学质量检测模拟试题含解析_第3页
2025届山东省新泰二中高二上数学期末教学质量检测模拟试题含解析_第4页
2025届山东省新泰二中高二上数学期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山东省新泰二中高二上数学期末教学质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知实数a,b满足,则下列不等式中恒成立的是()A. B.C. D.2.设命题,则为A. B.C. D.3.曲线在处的切线如图所示,则()A.0 B.C. D.4.已知椭圆的一个焦点坐标是,则()A.5 B.2C.1 D.5.抛物线y=4x2的焦点坐标是()A.(0,1) B.(1,0)C. D.6.椭圆的焦点坐标是()A.(±4,0) B.(0,±4)C.(±5,0) D.(0,±5)7.曲线与曲线的()A.长轴长相等 B.短轴长相等C.离心率相等 D.焦距相等8.已知正方体的棱长为1,且满足,则的最小值是()A. B.C. D.9.设变量x,y满足约束条件则目标函数的最小值为()A.3 B.1C.0 D.﹣110.若数列{an}满足……,则称数列{an}为“半差递增”数列.已知“半差递增”数列{cn}的前n项和Sn满足,则实数t的取值范围是()A. B.(-∞,1)C. D.(1,+∞)11.直线与圆的位置关系是()A.相切 B.相交C.相离 D.不确定12.如图,是函数的部分图象,且关于直线对称,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设等差数列的前项和为,且,,则__________.14.函数定义域为___________.15.已知函数集合,若A中有且仅有4个元素,则满足条件的整数a的个数为______16.已知等比数列的各项均为实数,其前项和为,若,,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)新疆长绒棉品质优良,纤维柔长,被世人誉为“棉中极品”,产于我国新疆的吐鲁番盆地、塔里木盆地的阿克苏、喀什等地.棉花的纤维长度是评价棉花质量的重要指标之一,在新疆某地区成熟的长绒棉中随机抽测了一批棉花的纤维长度(单位:mm),将样本数据制成频率分布直方图如下:(1)求的值;(2)估计该样本数据的平均数(同一组中的数据用该组数据区间的中点值为代表);(3)根据棉花纤维长度将棉花等级划分如下:纤维长度小于30mm大于等于30mm,小于40mm大于等于40mm等级二等品一等品特等品从该地区成熟的棉花中随机抽测两根棉花的纤维长度,用样本的频率估计概率,求至少有一根棉花纤维长度达到特等品的概率.18.(12分)在中,内角所对的边长分别为,是1和的等差中项(1)求角;(2)若的平分线交于点,且,求的面积19.(12分)已知命题:“,”,命题:“,”,若“且”为真命题,求实数的取值范围20.(12分)在锐角中,角的对边分别为,满足.(1)求;(2)若的面积为,求的值.21.(12分)在水平桌面上放一只内壁光滑的玻璃水杯,已知水杯内壁为抛物面型(抛物面指抛物线绕其对称轴旋转所得到的面),抛物面的轴截面是如图所示的抛物线.现有一些长短不一、质地均匀的细直金属棒,其长度均不小于抛物线通径的长度(通径是过抛物线焦点,且与抛物线的对称轴垂直的直线被抛物线截得的弦),若将这些细直金属棒,随意丢入该水杯中,实验发现:当细棒重心最低时,达到静止状态,此时细棒交汇于一点.(1)请结合你学过的数学知识,猜想细棒交汇点的位置;(2)以玻璃水杯内壁轴截面的抛物线顶点为原点,建立如图所示直角坐标系.设玻璃水杯内壁轴截面的抛物线方程为,将细直金属棒视为抛物线的弦,且弦长度为,以细直金属棒的中点为其重心,请从数学角度解释上述实验现象.22.(10分)城南公园种植了4棵棕榈树,各棵棕榈树成活与否是相互独立的,成活率为p,设为成活棕榈树的株数,数学期望.(1)求p的值并写出的分布列;(2)若有2棵或2棵以上的棕榈树未成活,则需要补种,求需要补种棕榈树的概率.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用特殊值排除错误选项,利用函数单调性证明正确选项.【详解】时,,但,所以A选项错误.时,,但,所以B选项错误.时,,但,所以C选项错误.在上递增,所以,即D选项正确.故选:D2、C【解析】特称命题的否定为全称命题,所以命题的否命题应该为,即本题的正确选项为C.3、C【解析】由图示求出直线方程,然后求出,,即可求解.【详解】由直线经过,,可求出直线方程为:∵在处的切线∴,∴故选:C【点睛】用导数求切线方程常见类型:(1)在出的切线:为切点,直接写出切线方程:;(2)过出的切线:不是切点,先设切点,联立方程组,求出切点坐标,再写出切线方程:.4、C【解析】根据题意椭圆焦点在轴上,且,将椭圆方程化为标准形式,从而得出,得出答案.【详解】由焦点坐标是,则椭圆焦点在轴上,且将椭圆化为,则由,焦点坐标是,则,解得故选:C5、C【解析】将抛物线方程化为标准方程,由此可抛物线的焦点坐标得选项.【详解】解:将抛物线y=4x2的化为标准方程为x2=y,p=,开口向上,焦点在y轴的正半轴上,故焦点坐标为(0,).故选:C6、A【解析】根据椭圆的方程求得的值,进而求得椭圆的焦点坐标,得到答案.【详解】由椭圆,可得,则,所以椭圆的焦点坐标为和.故选:A.7、D【解析】分别求出两曲线表示的椭圆的位置,长轴长、短轴长、离心率和焦距,比较可得答案.【详解】曲线表示焦点在x轴上的椭圆,长轴长为10,短轴长为6,离心率为,焦距为8,曲线焦点在x轴上的椭圆,长轴长为,短轴长为,离心率为,焦距为,故选:D8、C【解析】由空间向量共面定理可得点四点共面,从而将求的最小值转化为求点到平面的距离,再根据等体积法计算.【详解】因为,由空间向量的共面定理可知,点四点共面,即点在平面上,所以的最小值为点到平面的距离,由正方体棱长为,可得是边长为的等边三角形,则,,由等体积法得,,所以,所以的最小值为.故选:C【点睛】共面定理的应用:设是不共面的四点,则对空间任意一点,都存在唯一的有序实数组使得,说明:若,则四点共面.9、C【解析】线性规划问题,作出可行域后,根据几何意义求解【详解】作出可行域如图所示,,数形结合知过时取最小值故选:C10、A【解析】根据,利用递推公式求得数列的通项公式.再根据新定义的意义,代入解不等式即可求得实数的取值范围.【详解】因为所以当时,两式相减可得,即,所以数列是以公比的等比数列当时,所以,则由“差半递增”数列的定义可知化简可得解不等式可得即实数的取值范围为故选:A.11、B【解析】直线恒过定点,而此点在圆的内部,故可得直线与圆的位置关系.【详解】直线恒过定点,而,故点在圆的内部,故直线与圆的位置关系为相交,故选:B.12、C【解析】先根据条件确定为函数的极大值点,得到的值,再根据图像的单调性和导数几何意义得到和的正负即可判断.【详解】根据题意得,为函数部分函数的极大值点,所以,又因为函数在单调递增,由图像可知处切线斜率为锐角,根据导数的几何意义,所以,又因为函数在单调递增,由图像可知处切线斜率为钝角,根据导数的几何意义所以.即.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据,利用等差数列前项和公式,列方程求出,再由,能求出【详解】等差数列的前项和为,且,,,解得,,,解得,故答案为:1014、【解析】根据函数定义域的求法,即可求解.【详解】解:,解得,故函数的定义域为:.故答案为:.15、32【解析】作出的图像,由时,不等式成立,所以,判断出符合条件的非零整数根只有三个,即等价于时,;时,;利用数形结合,进行求解.【详解】作出的图像如图所示:因为时,不等式成立,所以,符合条件的非零整数根只有三个.由可得:时,;时,;所以在y轴左侧,的图像都在的下方;在y轴右侧,的图像都在的上方;而,,,,.平移直线,由图像可知:当时,集合A中除了0只含有1,2,3,符合题意,此时整数a可以取:-23,-22,-21……-9.一共15个;当时,集合A中除了0含有1,-1,-2,符合题意.当时,集合A中除了0只含有-1,-2,-3,符合题意,此时整数a可以取:5,6,7……20一共16个.所以整数a的值一共有15+1+16=32(个).故答案为:32【点睛】分离参数法求零点个数的问题是转化为,分别做出和的图像,观察交点的个数即为零点的个数.用数形结合法解决零点问题常有以下几种类型:(1)零点个数:几个零点;(2)几个零点的和;(3)几个零点的积.16、1【解析】分公比和两种情况讨论,结合,,即可得出答案.【详解】解:设等比数列的公比为,当,由,,不合题意,当,由,得,综上所述.故答案为:1.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】(1)由频率分布直方图中所有矩形的面积之和为1,可求出答案.(2)根据平均数的公式可得到答案.(3)先求出一根棉花纤维长度达到特等品的概率,然后分恰好有一根和两根棉花小问1详解】由解得【小问2详解】该样本数据的平均数为:【小问3详解】由题意一根棉花纤维长度达到特等品的概率为:两根棉花中至少有一根棉花纤维长度达到特等品的概率18、(1);(2)【解析】(1)根据是1和的等差中项得到,再利用正弦定理结合商数关系,两角和与差的三角函数化简得到求解;(2)由和求得b,c的关系,再结合余弦定理求解即可.【详解】(1)由已知得,在中,由正弦定理得,化简得,因为,所以,所以;(2)由正弦定理得,又,即,由余弦定理得,所以,所以【点睛】方法点睛:在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到19、或【解析】先分别求出,为真时,的范围;再求交集,即可得出结果.【详解】若是真命题.则对任意恒成立,∴;若为真命题,则方程有实根,∴,解得或,由题意,真也真,∴或即实数的取值范围是或.20、(1);(2).【解析】(1)由条件可得,即,从而可得答案.(2)由条件结合三角形的面积公式可得,再由余弦定理得,配方可得答案.【详解】(1)因为,所以,所以所以,因为所以,因为,所以(2)由面积公式得,于是,由余弦定理得,即,整理得,故.21、(1)抛物线的焦点或抛物面的焦点(2)答案见解析【解析】(1)结合通径的特点可猜想得到结果;(2)将问题转化为当时,只要过点,则中点到的距离最小,根据,结合抛物线定义可得结论.【小问1详解】根据通径的特征,知通径会经过抛物线的焦点达到静止状态,则可猜想细棒交汇点位置为:抛物线焦点或抛物面的焦点.【小问2详解】解释上述现象,即证:当(为抛物线通径)时,只要过点,则中点到的距离最小;如图所示,记点在抛物线准线上的射影分别是,,由抛物线定义知:,当过抛物线焦点时,点到准线距离取得最小值,最小值为的一半,此时点到轴距离最小.【点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论