版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页上海市黄浦区卢湾中学2025届九年级数学第一学期开学统考试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)多项式与多项式的公因式是()A. B. C. D.2、(4分)若等腰三角形底边长为8,腰长是方程的一个根,则这个三角形的周长是()A.16 B.18 C.16或18 D.213、(4分)如图,在平行四边形ABCD中,∠BAC=78°,∠ACB=38°,则∠D的度数是(
)A.52° B.64° C.78° D.38°4、(4分)如果不等式组有解,那么m的取值范围是
(
)A.m>5
B.m<5
C.m≥5
D.m≤55、(4分)一次函数y=kx+b(k,b是常数,k≠0)的图象如图所示,则不等式kx+b>0的解集为()A.x>-3 B.x>0 C.x<-2 D.x<06、(4分)将一次函数y=﹣2x的图象向下平移6个单位,得到新的图象的函数解析式为()A.y=﹣8x B.y=4x C.y=﹣2x﹣6 D.y=﹣2x+67、(4分)下列实数中,无理数是()A. B. C. D.8、(4分)在下列四个图案中既是轴对称图形,又是中心对称图形的是()A. B. C.. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,),过点E的直线l交x轴于点F,交y轴于点G(0,-2),则点F的坐标是10、(4分)如图,在中,对角线,相交于点,添加一个条件判定是菱形,所添条件为__________(写出一个即可).11、(4分)某公司要招聘职员,竟聘者需通过计算机、语言表达和写作能力测试,李丽的三项成绩百分制依次是70分,90分,80分,其中计算机成绩占,语言表达成绩占,写作能力成绩占,则李丽最终的成绩是______分.12、(4分)若有意义,则m能取的最小整数值是__.13、(4分)直线y=2x+6经过点(0,a),则a=_____.三、解答题(本大题共5个小题,共48分)14、(12分)用适当的方法解下列方程:(1)x(2﹣x)=x2﹣2(2)(2x+5)2﹣3(2x+5)+2=015、(8分)如图,在平面直角坐标系xOy中,已知正比例函数与一次函数的图像交于点A,(1)求点A的坐标;(2)设x轴上一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交和的图像于点B、C,连接OC,若BC=OA,求△OBC的面积.16、(8分)如图,在平行四边形中,是边上的中点,连接,并延长交的延长线于点.证明:.17、(10分)甲、乙两家文化用品商场平时以同样价格出售相同的商品.六一期间两家商场都让利酬宾,其中甲商场所有商品一律按8折出售,乙商场对一次购物中超过200元后的价格部分打7折.(1)分别写出两家商场购物金额(元)与商品原价(元)的函数解析式;(2)在如图所示的直角坐标系中画出(1)中函数的图象;(3)六一期间如何选择这两家商场购物更省钱?18、(10分)如图,在平面直角坐标系中,直线y=2x+4与x轴交于点A,与y轴交于点B,过点B的直线交x轴于C,且△ABC面积为1.(1)求点C的坐标及直线BC的解析式;(2)如图1,设点F为线段AB中点,点G为y轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求点G的坐标;(3)如图2,若M为线段BC上一点,且满足S△AMB=S△AOB,点E为直线AM上一动点,在x轴上是否存在点D,使以点D,E,B,C为顶点的四边形为平行四边形?若存在,请直接写出点D的坐标;若不存在,请说明理由.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,菱形的对角线、相交于点,过点作直线分别与、相交于、两点,若,,则图中阴影部分的面积等于______.20、(4分)当时,__.21、(4分)如图,菱形ABCD中,对角线AC、BD相交于点O,且AC=24,BD=10,若点E是BC边的中点,则OE的长是_____.22、(4分)如图,F是△ABC内一点,BF平分∠ABC且AF⊥BF,E是AC中点,AB=6,BC=8,则EF的长等于____.23、(4分)如图,在平行四边形ABCD中,BC=8cm,AB=6cm,BE平分∠ABC交AD边于点E,则线段DE的长度为_____.二、解答题(本大题共3个小题,共30分)24、(8分)如图①,中,,点为边上一点,于点,点为中点,点为中点,的延长线交于点,≌.(1)求证:;(2)求的大小;(3)如图②,过点作交的延长线于点,求证:四边形为矩形.25、(10分)四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.求∠BAD的度数;26、(12分)如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,CD=5cm,求AB的长.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】试题分析:把多项式分别进行因式分解,多项式=m(x+1)(x-1),多项式=,因此可以求得它们的公因式为(x-1).故选A考点:因式分解2、B【解析】
先把方程的根解出来,然后分别让两个根作为腰长,再根据三角形三边关系判断是否能组成三角形,即可得出答案.【详解】解:∵腰长是方程的一个根,解方程得:∴腰长可以为4或者5;当腰长为4时,三角形边长为:4,4,8,∵,根据三角形三边长度关系:两边之和要大于第三边可得:4,4,8三条线段不能构成三角形,∴舍去;当腰长为5时,三角形边长为:5,5,8,经检验三条线段可以构成三角形;∴三角形的三边长为:5,5,8,周长为:18.故答案为B.本题考查一元二次方程的解,以及三角形三边关系的验证,当涉及到等腰三角形的题目要进行分类讨论,讨论后一定不要忘记如果求得三角形的三边长,必须根据三角形三边关系再进行判断,看求得的三边长度是否能构成三角形.3、B【解析】
根据三角形内角和定理求得∠B的度数,再根据平行四边形的性质即可求得答案.【详解】在△ABC中,∠BAC=78°,∠ACB=38°,∴∠B=(180-78-38)o=64°,∵四边形ABCD是平行四边形,∴∠D=∠B=64°.故选:B.考查了平行四边形的性质,利用平行四边形对角相等得出答案是解题的关键.4、B【解析】解:∵不等式组有解,∴m≤x<1,∴m<1.故选B.点睛:本题主要考查了不等式组有解的条件,在解题时要会根据条件列出不等式.5、A【解析】
由图象可知kx+b=0的解为x=−1,所以kx+b>0的解集也可观察出来.【详解】从图象得知一次函数y=kx+b(k,b是常数,k≠0)的图象经过点(−1,0),并且函数值y随x的增大而增大,因而则不等式kx+b>0的解集是x>−1.故选:A.本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.6、C【解析】
直接利用一次函数平移规律,“上加下减”进而得出即可.【详解】解:将一次函数y=-2x的图象向下平移6个单位,那么平移后所得图象的函数解析式为:y=-2x-6,故选:C.此题主要考查了一次函数图象与几何变换,熟练记忆函数平移规律是解题关键.7、D【解析】
根据无理数、有理数的定义即可判定选择项.【详解】解:A、是分数,属于有理数,本选项不符合题意;B、是有限小数,属于有理数,本选项不符合题意;C、是整数,属于有理数,本选项不符合题意;D、=是无理数,本选项不符合题意;故选:D.此题主要考查了无理数定义无理数是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8、B【解析】试题分析:根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,因此:A、不是轴对称图形,是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选B.考点:轴对称图形和中心对称图形二、填空题(本大题共5个小题,每小题4分,共20分)9、(,0).【解析】试题分析:∵正方形的顶点A(m,2),∴正方形的边长为2,∴BC=2,而点E(n,),∴n=2+m,即E点坐标为(2+m,),∴k=2•m=(2+m),解得m=1,∴E点坐标为(3,),设直线GF的解析式为y=ax+b,把E(3,),G(0,﹣2)代入得,解得,∴直线GF的解析式为y=x﹣2,当y=0时,x﹣2=0,解得x=,∴点F的坐标为(,0).考点:反比例函数与一次函数的交点问题.10、AD=AB【解析】
根据菱形的判定定理即可求解.【详解】∵四边形ABCD为平行四边形,所以可以添加AD=AB,即可判定是菱形,故填:AD=AB.此题主要考查菱形的判定,解题的关键是熟知菱形的判定定理.11、78【解析】
直接利用加权平均数的求法进而得出答案.【详解】由题意可得:70×50%+90×30%+80×20%=78(分).故答案为:78此题考查加权平均数,解题关键在于掌握运算法则12、1【解析】
根据二次根式的意义,先求m的取值范围,再在范围内求m的最小整数值.【详解】∵若有意义∴3m﹣1≥0,解得m≥故m能取的最小整数值是1本题考查了二次根式的意义以及不等式的特殊解等相关问题.13、6【解析】
直接将点(0,a)代入直线y=2x+6,即可得出a=6.【详解】解:∵直线y=2x+6经过点(0,a),将其代入解析式∴a=6.此题主要考查一次函数解析式的性质,熟练掌握即可得解.三、解答题(本大题共5个小题,共48分)14、(1)x1=,x1=;(1)x1=﹣,x1=﹣1.【解析】
(1)整理后求出b1﹣4ac的值,再代入公式求出即可;(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】(1)x(1﹣x)=x1﹣1,整理得:x1﹣x﹣1=0,△=b1﹣4ac=(﹣1)1﹣4×1×(﹣1)=5,x,∴x1,x1;(1)(1x+5)1﹣3(1x+5)+1=0,(1x+5﹣1)(1x+5﹣1)=0,1x+5﹣1=0,1x+5﹣1=0,∴x1,x1=﹣1.本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解答此题的关键.15、(1)A(4,3);(2)28.【解析】
(1)点A是正比例函数与一次函数图像的交点坐标,把与联立组成方程组,方程组的解就是点A的横纵坐标;(2)过点A作x轴的垂线,在Rt△OAD中,由勾股定理求得OA的长,再由BC=OA求得OB的长,用点P的横坐标a表示出点B、C的坐标,利用BC的长求得a值,根据即可求得△OBC的面积.【详解】解:(1)由题意得:,解得,∴点A的坐标为(4,3).(2)过点A作x轴的垂线,垂足为D,在Rt△OAD中,由勾股定理得,∴.∵P(a,0),∴B(a,),C(a,-a+7),∴BC=,∴,解得a=8.∴.16、见解析【解析】
由在平行四边形中,是边上的中点,易证得,从而证得.【详解】证明:四边形是平行四边形,,则AB∥CF,,是边上的中点,,在和中,,,.此题考查了平行四边形的性质以及全等三角形的判定与性质,熟练掌握全等三角形的判定是解题的关键.17、(1)甲商场:y=0.8x,乙商场:y=x(0≤x≤200),y=0.7x+60(x>200);(2)详见解析;(3)详见解析.【解析】
(1)根据题中描述的数量关系分别写出甲商场和乙商场中,y与x的函数关系即可(其中乙商场需分0≤x≤200和x>200两段分别讨论);(2)根据(1)中所得函数关系式按要求画出函数图象即可;(3)根据(1)中所得函数关系式分0.8x<0.7x+60、0.8x=0.7x+60、0.8x>0.7x+60三种情况进行解答即可得到相应的结论.【详解】解:(1)甲商场:y=0.8x,乙商场:y=x(0≤x≤200),y=0.7(x﹣200)+200=0.7x+60,即y=0.7x+60(x>200);(2)如图所示;(3)①由0.8x<0.7x+60解得:x<600;②由0.8x=0.7x+60解得:x=600;③由0.8x>0.7x+60解得x>600,∴当x=600时,甲、乙商场购物花钱相等;当x<600时,在甲商场购物更省钱;当x>600时,在乙商场购物更省钱.本题考查了一次函数的应用,解决第(1)小题时,需注意乙商场中:y与x的函数关系式需分0≤x≤200和x>200两段分别讨论;解第(2)小题时,需分三种情况分别讨论,再作出相应的结论.18、(1)C(3,0),直线BC的解析式为y=﹣43x+4;(2)满足条件的点G坐标为(0,237)或(0,﹣1);(3)存在,满足条件的点D的坐标为(193,0)或(﹣13,0)或(﹣【解析】
(1)利用三角形的面积公式求出点C坐标,再利用待定系数法即可解决问题.(2)分两种情形:①当n>2时,如图2-1中,点Q落在BC上时,过G作直线平行于x轴,过点F,Q作该直线的垂线,垂足分别为M,N.求出Q(n-2,n-1).②当n<2时,如图2-2中,同法可得Q(2-n,n+1),利用待定系数法即可解决问题.(3)利用三角形的面积公式求出点M的坐标,求出直线AM的解析式,作BE//OC交直线AM于E,此时E(103,4),当CD=BE时,可得四边形BCDE,四边形BECD1是平行四边形,可得D(193,0),【详解】解:(1)∵直线y=2x+4与x轴交于点A,与y轴交于点B,∴A(-2,0),B(0,4),∴OA=2,OB=4,∵S∴AC=5,∴OC=3,∴C(3,0),设直线B的解析式为y=kx+b,则有3k+b=0b=4∴k=-∴直线BC的解析式为y=-4(2)∵FA=FB,A(-2,0),B(0,4),∴F(-1,2),设G(0,n),①当n>2时,如图2-1中,点Q落在BC上时,过G作直线平行于x轴,过点F,Q作该直线的垂线,垂足分别为M,N.∵四边形FGQP是正方形,易证ΔFMG≅ΔGNQ,∴MG=NQ=1,FM=GN=n-2,∴Q(n-2,n-1),∵点Q在直线y=-4∴n-1=-4∴n=23∴G(0,23②当n<2时,如图2-2中,同法可得Q(2-n,n+1),∵点Q在直线y=-4∴n+1=-4∴n=-1,∴G(0,-1).综上所述,满足条件的点G坐标为(0,237)(3)如图3中,设M(m,-4∵S∴S∴1∴m=6∴M(65,∴直线AM的解析式为y=3作BE//OC交直线AM于E,此时E(103,当CD=BE时,可得四边形BCDE,四边形BECD1是平行四边形,可得D(193,0),根据对称性可得点D关于点A的对称点D2(-31综上所述,满足条件的点D的坐标为(193,0)或(-13,0)或本题属于一次函数综合题,考查了待定系数法,三角形的面积,全等三角形的判定和性质,正方形的性质,平行四边形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】
根据菱形的性质可证≌,可将阴影部分面积转化为△AOB的面积,根据菱形的面积公式计算即可.【详解】四边形是菱形∴OC=OA,AB∥CD,∴∴≌(ASA)∴S△CFO=S△AOE∴S△CFO+S△EBO=S△AOB∴S△AOB=SABCD=×故答案为:.此题考查了菱形的性质,菱形的面积公式,全等三角形的判定,将阴影部分的面积转化为三角形AOB的面积为解题的关键.20、【解析】
将x的值代入x2-2x+2028=(x-1)2+2027,根据二次根式的运算法则计算可得.【详解】解:当x=1-时,x2-2x+2028=(x-1)2+2027=(1--1)2+2027=(-)2+2027,=3+2027=1,故答案为:1.本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的性质和运算法则及完全平方公式.21、6.1.【解析】
根据菱形的性质:对角线互相垂直,利用勾股定理求出BC,再利用直角三角形斜边的中线的性质OE=BC,即可求出OE的长.【详解】∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=12,OD=BD=1,在Rt△BOC中,BC==13,∵点E是BC边的中点,∴OE=BC=6.1,故答案为:6.1.此题主要考查了菱形的性质、勾股定理的运用以及直角三角形斜边上的中线等于斜边的一半等知识,得出EO=BC是解题关键.22、1.【解析】
根据直角三角形斜边上中线是斜边的一半可得DF=AB=AD=BD=4且∠ABF=∠BFD,结合角平分线可得∠CBF=∠DFB,即DE∥BC,进而可得DE=4,由EF=DE-DF可得答案.【详解】∵AF⊥BF,∴∠AFB=90°,∵AB=6,D为AB中点,∴DF=AB=AD=BD=3,∴∠ABF=∠BFD,又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠CBF=∠DFB,∴DE∥BC,∴△ADE∽△ABC,∴,即解得:DE=4,∴EF=DE-DF=1,故答案为:1.本题主要考查直角三角形的性质和相似三角形的判定与性质,熟练运用其判定与性质是解题的关键.23、2cm.【解析】试题解析:∵四边形ABCD为平行四边形,∴AE∥BC,AD=BC=8cm,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE=6cm,∴DE=AD﹣AE=8﹣6=2(cm).二、解答题(本大题共3个小题,共30分)24、(1)证明见解析;(2)∠MEF=30°;(3)证明见解析.【解析】
(1)利用直角三角形斜边中线的性质定理可得CM=DB,EM=DB,问题得证;(2)利用全等三角形的性质,证明△DEM是等边三角形,即可解决问题;(3)设FM=a,则AE=CM=EM=a,EF=2a,推出,,得到AN∥PM,易证四边形ANMP是平行四边形,结合∠P=90°即可解决问题.【详解】解:(1)证明:如图①中,∵DE⊥AB,∴∠DEB=∠DCB=90°,∵DM=MB,∴CM=DB,EM=DB,∴CM=EM;(2)解:∵△DAE≌△CEM,CM=EM,∴AE=ED=EM=CM=DM,∠AED=∠CME=90°∴△ADE是等腰直角三角形,△DEM是等边三角形,∵∠AED=∠DEF=90°,∠DE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 员工保证书范文
- 油田工程建设系统人员测试专项试卷
- 学校应急预案汇编2
- 语文统编版(2024)一年级上册语文园地一 教案
- 会计数据分析 课件 第8章 财务报表分析
- 2024届山西省运城市重点中学高三练习三(全国卷I)数学试题
- 科学的声音课件
- 5年中考3年模拟试卷初中生物八年级下册第一节地球上生命的起源
- 学校预防自然灾害(暴风雨雪天气、地震)应急处置预案
- 高中语文《人的正确思想是从哪里来的?》随堂练习(含答案)
- 【新教材】部编版语文五年级上册课堂作业本答案
- 抗菌药物相关知识培训ppt课件
- 毛笔书法入门--ppt课件
- 苏教版高中语文必修三 第2专题 《品质》新课讲知课件1
- 涂布机培训资料
- VDA6.3过程审核检查表
- 定制式活动义齿产品技术要求
- 蒸汽管道水力计算
- 机组大修化学监督检查报告
- 建筑工程不良行为 申 诉 书
- 生态观光果园项目建议书范文
评论
0/150
提交评论