




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页陕西省西安爱知初级中学2024年九上数学开学质量跟踪监视模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)己知两个变量之间的关系满足y=-x+2,则当x=-1时,对应的y的值()A.3 B.1 C.-1 D.-32、(4分)关于频率与概率有下列几种说法:①“明天下雨的概率是90%”表示明天下雨的可能性很大;②“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上;③“某彩票中奖的概率是1%”表示买10张该种彩票不可能中奖;④“抛一枚硬币正面朝上的概率为”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在附近,正确的说法是()A.②④ B.②③ C.①④ D.①③3、(4分)下列图形都是由相同的小正方形按照一定规律摆放而成,其中第1个图共有3个小正方形,第2个图共有8个小正方形,第3个图共有15个小正方形,第4个图共有24个小正方形,照此规律排列下去,则第8个图中小正方形的个数是()A.48 B.63 C.80 D.994、(4分)某边形的每个外角都等于与它相邻内角的,则的值为()A.7 B.8 C.10 D.95、(4分)已知:,计算:的结果是()A. B. C. D.6、(4分)一次函数是(是常数,)的图像如图所示,则不等式的解集是()A. B. C. D.7、(4分)如图,平行四边形ABCD中,AD∥BC,AB=BC=CD=AD=4,∠A=∠C=60°,连接BD,将△BCD绕点B旋转,当BD(即BD′)与AD交于一点E,BC(即BC′)同时与CD交于一点F时,下列结论正确的是()①AE=DF;②∠BEF=60°;③∠DEB=∠DFB;④△DEF的周长的最小值是4+2A.①② B.②③ C.①②④ D.①②③④8、(4分)如图,点A、B、C在一次函数y=3x+m的图象上,它们的横坐标依次为﹣2,﹣1,1,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是()A. B.3 C.3(m+1) D.(m+1)二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C的面积和是9,则正方形D的边长为__________.10、(4分)若关于的一元二次方程有一个根为,则________.11、(4分)如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去记正方形ABCD的边为,按上述方法所作的正方形的边长依次为、、、,根据以上规律写出的表达式______.12、(4分)已知某汽车油箱中的剩余油量(升)是该汽车行驶时间(小时)的一次函数,其关系如下表:(小时)…(升)…由此可知,汽车行驶了__________小时,油箱中的剩余油量为升.13、(4分)函数为任意实数)的图象必经过定点,则该点坐标为____.三、解答题(本大题共5个小题,共48分)14、(12分)计算:(1)(2)(4)÷215、(8分)在矩形中,,,是边上一点,以点为直角顶点,在的右侧作等腰直角.(1)如图1,当点在边上时,求的长;(2)如图2,若,求的长;(3)如图3,若动点从点出发,沿边向右运动,运动到点停止,直接写出线段的中点的运动路径长.16、(8分)如图,在ABCD中,∠DAB=60°,点E,F分别在CD,AB的延长线上,且AE=AD,CF=CB.(1)求证:四边形AFCE是平行四边形.(2)若去掉已知条件的“∠DAB=60°,上述的结论还成立吗”若成立,请写出证明过程;若不成立,请说明理由.17、(10分)已知:正方形ABCD中,对角线AC、BD交于点O,过O点的两直线OE、OF互相垂直,分别交AB、BC于E、F,连接EF.(1)求证:OE=OF;(2)若AE=4,CF=3,求EF的长;(3)若AB=8cm,请你计算四边形OEBF的面积.18、(10分)如图,抛物线与轴交于,两点在的左侧),与轴交于点.(1)求点,点的坐标;(2)求的面积;(3)为第二象限抛物线上的一个动点,求面积的最大值.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)使有意义的x的取值范围是______.20、(4分)已知正比例函数y=kx的图象经过点A(﹣1,2),则正比例函数的解析式为.21、(4分)一次函数图象过点日与直线平行,则一次函数解析式__________.22、(4分)将一个有80个数据的一组数分成四组,绘出频数分布直方图,已知各小长方形的高的比为,则第二小组的频数为______.23、(4分)正十边形的外角和为__________.二、解答题(本大题共3个小题,共30分)24、(8分)已知:如图,Rt△ABC中,∠ACB=900,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.求证:CE=CF.25、(10分)(1)如图甲,从边长为a的正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形,然后拼成一个平行四边形(如图乙),那么通过计算两个图形阴影部分的面积,可以验证因式分解公式成立的是________;(2)根据下面四个算式:5232=(5+3)×(53)=8×2;11252=(11+5)×(115)=16×6=8×12;15232=(15+3)×(153)=18×12=8×27;19272=(19+7)×(197)=26×12=8×1.请你再写出两个(不同于上面算式)具有上述规律的算式;(3)用文字写出反映(2)中算式的规律,并证明这个规律的正确性.26、(12分)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.满意度人数所占百分比非常满意1210%满意54m比较满意n40%不满意65%根据图表信息,解答下列问题:(1)本次调查的总人数为______,表中m的值为_______;(2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】
将自变量x的值代入函数解析式求解即可.【详解】解:x=-1时,y=-(-1)+2=1+2=1.
故选:A.本题考查函数值的计算:(1)当已知函数解析式时,求函数值就是求代数式的值;
(2)函数值是唯一的,而对应的自变量可以是多个.2、C【解析】
分别利用概率的意义分析得出答案.【详解】①“明天下雨的概率是90%”表示明天下雨的可能性很大;正确;
②“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上;错误;
③“某彩票中奖的概率是1%”表示买10张该种彩票不可能中奖;错误;
④“抛一枚硬币正面朝上的概率为”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在附近,正确.
故选C.此题主要考查了概率的意义,正确理解概率的意义是解题关键.3、C【解析】
解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.【详解】∵第1个图共有3个小正方形,3=1×3;第2个图共有8个小正方形,8=2×34;第3个图共有15个小正方形,15=3×5;第4个图共有24个小正方形,24=4×6;…∴第8个图共有8×10=80个小正方形;故选C.本题考查了规律型图形类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.4、C【解析】
设出外角的度数,表示出内角的度数,根据一个内角与它相邻的外角互补列出方程,解方程得到答案.【详解】设内角为x,则相邻的外角为x,由题意得,x+x=180°,解得,x=144°,360°÷36°=10故选:C.本题考查的是多边形内、外角的知识,理解一个多边形的一个内角与它相邻外角互补是解题的关键.5、C【解析】
原式利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值.【详解】∵,,
∴,
故选:C.本题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.6、C【解析】
根据一次函数的图象看出:一次函数y=kx+b(k,b是常数,k≠1)的图象与x轴的交点是(2,1),得到当x>2时,y<1,即可得到答案.【详解】解:一次函数y=kx+b(k,b是常数,k≠1)的图象与x轴的交点是(2,1),当x>2时,y<1.故答案为:x>2.故选:C.本题主要考查对一次函数的图象,一次函数与一元一次不等式等知识点的理解和掌握,能观察图象得到正确结论是解此题的关键.7、C【解析】
根据题意可证△ABE≌△BDF,可判断①②③,由△DEF的周长=DE+DF+EF=AD+EF=4+EF,则当EF最小时△DEF的周长最小,根据垂线段最短,可得BE⊥AD时,BE最小,即EF最小,即可求此时△BDE周长最小值.【详解】∵AB=BC=CD=AD=4,∠A=∠C=60°,∴△ABD,△BCD为等边三角形,∴∠A=∠BDC=60°.∵将△BCD绕点B旋转到△BC'D'位置,∴∠ABD'=∠DBC',且AB=BD,∠A=∠DBC',∴△ABE≌△BFD,∴AE=DF,BE=BF,∠AEB=∠BFD,∴∠BED+∠BFD=180°.故①正确,③错误;∵∠ABD=60°,∠ABE=∠DBF,∴∠EBF=60°.故②正确;∵△DEF的周长=DE+DF+EF=AD+EF=4+EF,∴当EF最小时.∵△DEF的周长最小.∵∠EBF=60°,BE=BF,∴△BEF是等边三角形,∴EF=BE,∴当BE⊥AD时,BE长度最小,即EF长度最小.∵AB=4,∠A=60°,BE⊥AD,∴EB=2,∴△DEF的周长最小值为4+2.故④正确.故选C.本题考查了旋转的性质,等边三角形的性质,平行四边形的性质,最短路径问题,关键是灵活运用这些性质解决问题.8、A【解析】
利用A、B、C以及直线与y轴交点这4个点的坐标来分别计算阴影部分的面积,可将m看做一个常量.【详解】解:将A、B、C的横坐标代入到一次函数中;解得A(﹣2,m﹣6),B(﹣1,m﹣3),C(1,m+3).由一次函数的性质可知,三个阴影部分三角形全等,底边长为2﹣1=1,高为(m﹣3)﹣(m﹣6)=3,可求得阴影部分面积为:S=,故选:A.本题考查的是一次函数图象上点的坐标特点,图中阴影是由3个全等直角三角形组成,解题过程中只要计算其中任意一个即可.同时,还可把未知量m当成一个常量来看.二、填空题(本大题共5个小题,每小题4分,共20分)9、3【解析】
由勾股定理可知,两只角边的平方和等于斜边的平方,在此题中,各边的平方可以代表每个正方形的面积.建立等式,通过移项可得正方形D的面积,再开平方得到边长.【详解】每个正方形的面积=直角三角形各边的平方再由勾股定理可联立等式即,又正方形A、B、C的面积和是9则,所以,所以正方形D的边长为本题考察了直角三角形的勾股定理的应用,务必清楚的是题中每个正方行的面积=直角三角形各边的平方.10、4【解析】
根据一元二次方程的解的定义,把x=0代入x2+mx+2m-4=0得到关于m的一次方程2m-4=0,然后解一次方程即可.【详解】把代入,得2m-4=0解得m=2本题考查一元二次方程的解,熟练掌握计算法则是解题关键.11、
【解析】
根据正方形对角线等于边长的倍得出规律即可.【详解】由题意得,a1=1,
a2=a1=,a3=a2=()2,a4=a3=()3,…,an=an-1=()n-1.=[()n-1]2=故答案为:本题主要考查了正方形的性质,熟记正方形对角线等于边长的倍是解题的关键,要注意的指数的变化规律.12、11.5【解析】
根据剩余油量(升)、汽车行驶时间(小时),可求出每千米用油量,根据题意可写出函数式.【详解】根据题意得每小时的用油量为,∴剩余油量(升)与汽车行驶时间(小时)的函数关系式:,当y=8时,x=11.5.故答案为:11.5.此题考查一次函数,解题关键在于结合实际列出一次函数关系式求解即可.13、(1,2)【解析】
先把函数解析式化为y=k(x-1)+2的形式,再令x=1求出y的值即可.【详解】解:函数可化为,当,即时,,该定点坐标为.故答案为:.本题考查的是一次函数图象上点的坐标特点,把原函数的解析式化为y=k(x-1)+2的形式是解答此题的关键.三、解答题(本大题共5个小题,共48分)14、(1)4+5(2)2+2【解析】
(1)先进行乘法运算,然后把化简后合并即可.(2)运用实数运算、二次根式化简,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】(1)原式=(2)此题考查二次根式的混合运算,实数运算、二次根式化简,掌握运算法则是解题关键15、(1);(2);(3)线段的中点的运动路径长为.【解析】
(1)如图1中,证明△ABE≌△ECF(AAS),即可解决问题.(2)如图2中,延长DF,BC交于点N,过点F作FM⊥BC于点M.证明△EFM≌△DNC(AAS),设NC=FM=x,利用勾股定理构建方程即可解决问题.(3)如图3中,在BC上截取BM=BA,连接AM,MF,取AM的中点H,连接HQ.由△ABE∽△AMF,推出∠AMF=∠ABE=90°,由AQ=FQ,AH=MH,推出,HQ∥FM,推出∠AHQ=90°,推出点Q的运动轨迹是线段HQ,求出MF的长即可解决问题.【详解】(1)如图1中,四边形是矩形,,,,,,,,.(2)如图2中,延长,交于点,过点作于点.同理可证,设,则,,,,,,,,,即在中,,在中,,在中,,即,解得或(舍弃),即,(3)如图3中,在上截取,连接,,取的中点,连接.,,,,,,,,,,,点的运动轨迹是线段,当点从点运动到点时,,,,线段的中点的运动路径长为.本题考查了全等三角形、勾股定理、相似三角形,掌握矩形的性质及全等三角形的性质和判定、利用勾股定理列方程、相似三角形的性质是解题的关键.16、(1)证明见解析(2)成立,理由见解析【解析】
(1)由已知条件可得△AED,△CFB是正三角形,可得∠AEC=∠BFC=60°,∠EAF=∠FCE=120°,所以四边形AFCE是平行四边形.(2)上述结论还成立,可以证明△ADE≌△CBF,可得∠AEC=∠BFC,∠EAF=∠FCE,所以四边形AFCE是平行四边形.【详解】解:(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,∠DCB=∠DAB=60°.∴∠ADE=∠CBF=60°.∵AE=AD,CF=CB,∴△AED,△CFB是正三角形.∴∠AEC=∠BFC=60°,∠EAF=∠FCE=120°.∴四边形AFCE是平行四边形.(2)解:上述结论还成立.证明:∵四边形ABCD是平行四边形,∴DC∥AB,∠CDA=∠CBA,∠DCB=∠DAB,AD=BC,DC=AB.∴∠ADE=∠CBF.∵AE=AD,CF=CB,∴∠AED=∠ADE,∠CFB=∠CBF.∴∠AED=∠CFB.又∵AD=BC,在△ADE和△CBF中.∠ADE=∠CBF,∠AED=∠CFB,AD=BC,∴△ADE≌△CBF(AAS).∴∠AED=∠BFC,∠EAD=∠FCB.又∵∠DAB=∠BCD,∴∠EAF=∠FCE.∴四边形EAFC是平行四边形.17、(1)见解析;(2)EF=5;(3)16cm2【解析】
(1)根据正方形的性质可得OB=OC,∠OBE=∠OCF=45°,再利用同角的余角相等得到∠BOE=∠COF,从而推出△OBE≌△OCF,即可得OE=OF;(2)由(1)中的全等三角形可得BE=CF=3,由正方形的性质可知AB=BC,推出BF=AE=4,再根据勾股定理求出EF即可;(3)由(1)中的全等三角形可将四边形OEBF的面积转化为△OBC的面积,等于正方形面积的四分之一.【详解】(1)∵四边形ABCD为正方形∴OB=OC,∠OBE=∠OCF=45°,BD⊥AC∴∠BOF+∠COF=90°,∵OE⊥OF∴∠BOF+∠BOE=90°∴∠BOE=∠COF在△OBE和△OCF中,∵∠OBE=∠OCF,OB=OC,∠BOE=∠COF∴△OBE≌△OCF(ASA)∴OE=OF(2)∵△OBE≌△OCF∴BE=CF=3,∵四边形ABCD为正方形∴AB=BC即AE+BE=BF+CF∴BF=AE=4∴EF=(3)∵△OBE≌△OCF∴S四边形OEBF=S△OBE+S△OBF=S△OCF+S△OBF=S△BOC=S正方形ABCD==16cm2本题考查正方形的性质,全等三角形的判定与性质以及勾股定理,熟练掌握正方形的性质得出全等三角形的条件是解题的关键.18、(1),;(2);(3)当时,最大面积4.【解析】
(1)在抛物线的解析式中,设可以求出A、B点的坐标(2)令,求出顶点C的坐标,进而能得出AB,CO的长度,直接利用两直角边求面积即可(3)作交于,设解析式把A,C代入求出解析式,设则,把值代入求三角形的面积,即可解答【详解】(1)设,则,,(2)令,可得,(3)如图:作交于设解析式解得:解析式设则当时,最大面积4此题考查二次函数综合题,解题关键在于做辅助线一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】二次根式有意义的条件.【分析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.20、y=﹣1x【解析】试题分析:根据点在直线上点的坐标满足方程的关系,把点A的坐标代入函数解析式求出k值即可得解:∵正比例函数y=kx的图象经过点A(﹣1,1),∴﹣k=1,即k=﹣1.∴正比例函数的解析式为y=﹣1x.21、【解析】
设一次函数解析式为y=kx+b,先把(0,-1)代入得b=-1,再利用两直线平行的问题得到k=-3,即可得到一次函数解析式.【详解】解:设一次函数解析式为y=kx+b,
把(0,-1)代入得b=-1,
∵直线y=kx+b与直线y=1-3x平行,
∴k=-3,
∴一次函数解析式为y=-3x-1.
故答案为:y=-3x-1.本题考查两直线相交或平行的问题:若两条直线是平行的关系,那么它们的自变量系数相同,即k值相同.22、2【解析】
各小长方形的高的比为3:3:2:3,就是各组频率的比,也是频数的比,根据一组数据中,各组的频率和等于3;各组的频数和等于总数,即可求解.【详解】∵各小长方形的高的比为3:3:2:3,∴第二小组的频率=3÷(3+3+2+3)=0.3.∵有80个数据,∴第二小组的频数=80×0.3=2.故答案为:2.本题是对频率、频数意义的综合考查.注意:各小组频数之和等于数据总和,各小组频率之和等于3.23、360°【解析】
根据多边形的外角和是360°即可求出答案.【详解】∵任意多边形的外角和都是360°,∴正十边形的外交和是360°,故答案为:360°.此题考查多边形的外角和定理,熟记定理是解题的关键.二、解答题(本大题共3个小题,共30分)24、见解析.【解析】
根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,根据等腰三角形的判定推出即可。【详解】证明:∵∠ACB=90°,CD⊥AB,
∴∠CDA=90°,
∴∠CAF+∠CFA=90°,∠FAD+∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 膜材加工合同协议书范本
- 2025年VFP考试真相试题及答案透析
- 施工安全装修合同协议书
- 直播公司外包合同协议书
- 计算机公共基础知识考试试题及答案全景
- 2025年JAVA常用库的使用技巧试题及答案
- 赞助协议书合同审核要点
- MS Office技能应用试题及答案详解
- 甲方终止劳动合同协议书
- 基因治疗产品临床试验数据共享及保密协议
- 精神科出院康复指导与随访
- 济南传统民居课件
- 医院感染预防与控制的基本概念和原则
- 2024年数字广西集团有限公司招聘笔试参考题库含答案解析
- 食堂钢丝球管理制度
- 住宅室内装饰装修工程施工合同
- 岩土工程中英文对照外文翻译文献
- 河南省职业技能等级认定试卷-证书-网络与信息安全管理员三级实操样卷评分记录表
- 2023年1月浙江省高考英语真题听力试题(附听力音频+答案+文本)
- ansys课程设计论文2
- 2022年学前教育生均公用经费项目绩效评价报告
评论
0/150
提交评论