山西省吕梁市蕴华国际双语学校2024年数学九上开学考试试题【含答案】_第1页
山西省吕梁市蕴华国际双语学校2024年数学九上开学考试试题【含答案】_第2页
山西省吕梁市蕴华国际双语学校2024年数学九上开学考试试题【含答案】_第3页
山西省吕梁市蕴华国际双语学校2024年数学九上开学考试试题【含答案】_第4页
山西省吕梁市蕴华国际双语学校2024年数学九上开学考试试题【含答案】_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页山西省吕梁市蕴华国际双语学校2024年数学九上开学考试试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若是关于,的二元一次方程,则()A., B., C., D.,2、(4分)如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=2x+3B.y=x﹣3C.y=2x﹣3D.y=﹣x+33、(4分)在△ABC中,AB=BC=2,O是线段AB的中点,P是射线CO上的一个动点,∠AOC=60,则当△PAB为直角三角形时,AP的长为A.1,,7 B.1,, C.1,, D.1,3,4、(4分)菱形的边长是2cm,一条对角线的长是2cm,则另一条对角线的长是()A.4cm B.cm C.2cm D.2cm5、(4分)已知空气的单位质量是0.001239g/cm3,用科学记数法表示该数为()A. B. C. D.6、(4分)下列命题中,真命题是()A.两条对角线相等的四边形是矩形;B.两条对角线互相垂直的四边形是菱形;C.两条对角线互相垂直且相等的四边形是正方形;D.两条对角线相等的梯形是等腰梯形7、(4分)矩形与矩形如图放置,点共线,点共线,连接,取的中点,连接.若,则的长为A. B. C. D.8、(4分)如果点A(,)和点B(,)是直线y=kx-b上的两点,且当<时,<,那么函数y=的图象大致是()A. B.C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在矩形中,,点分别在平行四边形各边上,且AE=CG,BF=DH,四边形的周长的最小值为______.10、(4分)如图,在等边中,cm,射线,点从点出发沿射线以的速度运动,点从点出发沿射线以的速度运动,如果点、同时出发,当以点、、、为顶点的四边形是平行四边形时,运动时间为____.11、(4分)如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E是AC的中点.若DE=5,则AB的长为▲.12、(4分)将正比例函数y=3x的图象向下平移11个单位长度后,所得函数图象的解析式为______.13、(4分)如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件__________使四边形AECF是平行四边形(只填一个即可).三、解答题(本大题共5个小题,共48分)14、(12分)某开发公司生产的960件新产品,需要精加工后,才能投放市场.现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完这批产品比乙工厂单独加工完这批产品多用20天,而乙工厂每天比甲工厂多加工8件产品,公司需付甲工厂加工费用每天80元,乙工厂加工费用每天120元.(1)求甲、乙两个工厂每天各能加工多少件新产品.(2)公司制定产品加工方案如下:可以由每个厂家单独完成;也可以由两个厂家同时合作完成.在加工过程中,公司需派一名工程师每天到厂进行技术指导,并负担每天5元的误餐补助费.请你帮助公司选择一种既省时又省钱的加工方案,并说明理由.15、(8分)如图,在平行四边形中,,,分别是,的中点,.(1)求证:四边形是菱形;(2)求的长.16、(8分)某校初二年级以班为单位进行篮球比赛,第一轮比赛是先把全年级平分成、两个大组,同一个大组的每两个班都进行一场比赛,这样第一轮、两个大组共进行了20场比赛,问该校初二年级共有几个班?17、(10分)如图,已知点E在平行四边形ABCD的边AB上,设=,再用图中的线段作向量.(1)写出平行的向量;(2)试用向量表示向量;(3)求作:.18、(10分)已知坐标平面内的三个点、、.(1)比较点到轴的距离与点到轴距离的大小;(2)平移至,当点和点重合时,求点的坐标;(3)平移至,需要至少向下平移超过单位,并且至少向左平移个单位,才能使位于第三象限.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,矩形中,,,在数轴上,若以点为圆心,对角线的长为半径作弧交数轴的正半轴于,则点的表示的数为_____.20、(4分)如图,在中,,,的周长是10,于,于,且点是的中点,则的长是______.21、(4分)已知y是x的一次函数下表列出了部分对应值,则m=_______22、(4分)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,书中的算法体系至今仍在推动着计算机的发展和应用.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文是:今有门不知其高、宽,有竿,不知其长、短,横放,竿比门宽长出尺;竖放,竿比门高长出尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为尺,则可列方程为__________.23、(4分)若a=,b=,则=_______.二、解答题(本大题共3个小题,共30分)24、(8分)如图,将▱ABCD的对角线AC分别向两个方向延长至点E,F,且,连接BE,求证:.25、(10分)中国经济的快速发展让众多国家感受到了威胁,随着钓鱼岛事件、南海危机、萨德入韩等一系列事件的发生,国家安全一再受到威胁,所谓“国家兴亡,匹夫有责”,某校积极开展国防知识教育,九年级甲、乙两班分别选5名同学参加“国防知识”比赛,其预赛成绩如图所示:(1)根据上图填写下表:平均数中位数众数方差甲班8.58.5乙班8.5101.6(2)根据上表数据,分别从平均数、中位数、众数、方差的角度分析哪个班的成绩较好.26、(12分)在一次晚会上,大家做投飞镖的游戏.只见靶子设计成如图的形式.已知从里到外的三个圆的半径分别为l,2,3,并且形成A,B,C三个区域.如果飞镖没有停落在最大圆内或只停落在圆周上,那么可以重新投镖.(1)分别求出三个区域的面积;(2)雨薇与方冉约定:飞镖停落在A、B区域雨薇得1分,飞镖落在C区域方冉得1分.你认为这个游戏公平吗?为什么?如果不公平,请你修改得分规则,使这个游戏公平.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

根据二元一次方程的定义可知,m、n应满足以下4个关系式:,解之即得.【详解】解:由题意是关于,的二元一次方程,于是m、n应满足,解得,,故选D.本题考查了二元一次方程的定义,认真审题并列出m、n应满足的4个关系式是解决此题的关键.2、D【解析】试题分析:∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),设一次函数解析式为:y=kx+b,∵过点A的一次函数的图象过点A(0,1),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组b=3k+b=2解得b=3k=-1则这个一次函数的解析式为y=﹣x+1.故选D.考点:1.待定系数法求一次函数解析式2.两条直线相交或平行问题.3、C【解析】

当时,由对顶角的性质可得,易得,易得的长,利用勾股定理可得的长;当时,分两种情况讨论:①利用直角三角形斜边的中线等于斜边的一半得出,易得为等边三角形,利用锐角三角函数可得的长;易得,利用勾股定理可得的长;②利用直角三角形斜边的中线等于斜边的一半可得结论.【详解】解:如图1,当时,,,,,为等边三角形,,;如图2,当时,,,,在直角三角形中,;如图3,,,,,为等边三角形,,故选:C.本题主要考查了勾股定理,含直角三角形的性质和直角三角形斜边的中线,运用分类讨论,数形结合思想是解答此题的关键.4、C【解析】如图所示,已知AB=2cm,因为菱形对角线互相平分,所以BO=OD=cm,在Rt△ABO中,,AB=2cm,BO=cm,所以AO=1cm,故菱形的另一条对角线AC长为2AO=2cm,故选C.点睛:本题考查了菱形对角线互相垂直平分的性质,勾股定理在直角三角形中的运用,本题根据勾股定理求AO的长是解题的关键.5、C【解析】

绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.001219=1.219×10-1.

故选:C.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6、D【解析】

A、根据矩形的判定定理作出分析、判断;

B、根据菱形的判定定理作出分析、判断;

C、根据正方形的判定定理作出分析、判断;

D、根据等腰梯形的判定定理作出分析、判断.【详解】解:A、两条对角线相等的四边形不一定是矩形.例如等腰梯形的两条对角线也相等;故本选项错误;

B、两条对角线垂直的平行四边形是菱形;故本选项错误;

C、两条对角线垂直且相等的四边形也可能是等腰梯形;故本选项错误;

D、两条对角线相等的梯形是等腰梯形,此说法正确;故本选项正确;

故选:D.本题综合考查了等腰梯形、正方形菱形以及矩形的判定.解答该题时,需要牢记常见的四边形的性质.7、A【解析】

延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=2,从而得出答案.【详解】解:如图,延长GH交AD于点P,

∵四边形ABCD和四边形CEFG都是矩形,

∴∠ADC=∠ADG=∠CGF=90°,AD=BC=3、GF=CE=1,

∴AD∥GF,

∴∠GFH=∠PAH,

又∵H是AF的中点,

∴AH=FH,

在△APH和△FGH中,∵∴△APH≌△FGH(ASA),

∴AP=GF=1,GH=PH=PG,

∴PD=AD-AP=3-1=2,

∵CG=EF=3、CD=1,

∴DG=2,△DGP是等腰直角三角形,

则GH=PG=×故选:A.本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.8、A【解析】

根据一次函数的增减性判断出k的符号,再根据反比例函数的性质解答即可.【详解】解:∵当x1<x2时,y2<y1,

∴k<0,

∴函数y=的图象在二、四象限,四个图象中只有A符合.

故选:A.本题考查了反比例函数的图象性质和一次函数的图象性质,根据一次函数的性质结合函数的单调性确定k值的取值范围是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、20【解析】

作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,过点G作GG′⊥AB于点G′,由对称结合矩形的性质可知:E′G′=AB,GG′=AD,利用勾股定理即可求出E′G的长度,进而可得出四边形EFGH周长的最小值【详解】作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,EF=E'F,过点G作GG′⊥AB于点G′,如图所示AE=CG.BE=BE′E′G′=AB=8,GG′=AD=6E`G=∵C四边形EFGH=2(GF+EF)=2E′G=20此题考查矩形的性质,勾股定理,解题关键在于作辅助线10、1或3【解析】

用t表示出AE和CF,当AE=CF时,以点、、、为顶点的四边形是平行四边形,据此求解即可.【详解】解:设运动时间为t,则AE=tcm,BF=2tcm,∵是等边三角形,cm,∴BC=3cm,∴CF=,∵AG∥BC,∴AE∥CF,∴当AE=CF时,以点、、、为顶点的四边形是平行四边形,∴=t,∴2t-3=t或3-2t=t,∴t=3或t=1,故答案是:1或3.本题考查了平行四边形的判定,平行四边形有很多判定定理,结合题目条件找到所缺的合适的判定条件是解题的关键.11、1【解析】

解:∵在△ABC中,AD⊥BC,垂足为D,

∴△ADC是直角三角形;

∵E是AC的中点.

∴DE=AC(直角三角形的斜边上的中线是斜边的一半);

又∵DE=5,AB=AC,

∴AB=1;

故答案为:1.12、【解析】

根据一次函数的上下平移规则:“上加下减”求解即可【详解】解:将正比例函数y=3x的图象向下平移个单位长度,所得的函数解析式为.故答案为:.本题考查的是一次函数的图象与几何变换,熟知一次函数图象变换的法则是解答此题的关键.13、AF=CE(答案不唯一).【解析】

根据平行四边形性质得出AD∥BC,得出AF∥CE,当AF=CE时,四边形AECF是平行四边形;根据有一组对边相等且平行的四边形是平行四边形的判定,可添加AF=CE或FD=EB.根据两组对边分别平行的四边形是平行四边形的定义,可添加AE∥FC.添加∠AEC=∠FCA或∠DAE=∠DFC等得到AE∥FC,也可使四边形AECF是平行四边形.三、解答题(本大题共5个小题,共48分)14、(1)甲、乙两个工厂每天各能加工16和24件.(2)合作.【解析】解:(1)设甲工厂每天能加工件产品,则乙工厂每天能加工件产品,根据题意,得15、(1)见解析;(2)【解析】

(1)由平行四边形的性质得出AD∥BC,AD=BC,证出DE∥CF,DE=CF,得出四边形CDEF是平行四边形,证出CD=CF,即可得出四边形CDEF是菱形;

(2)连接DF,证明△CDF是等边三角形,得出∠CDF=∠CFD=60°,求出∠BDF=30°,证出∠BDC=∠BDF+∠CDF=90°,由勾股定理即可得出答案.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,

∵E,F分别是AD,BC的中点,

∴DE=AD,CF=BC,

∴DE∥CF,DE=CF,

∴四边形CDEF是平行四边形,

又∵BC=2CD,

∴CD=CF,

∴四边形CDEF是菱形;(2)如图,连接,,,是等边三角形,,,.是的中点,,.,.,.本题考查的是菱形的判定与性质、平行四边形的判定和性质、等边三角形的判定与性质、勾股定理等知识;熟练掌握平行四边形的判定与性质是解决问题的关键.16、10个【解析】

设全年级共有2n个班级,则每一大组有n个班,每个班需参加(n-1)场比赛,则共有n(n-1)×场比赛,可以列出一个一元二次方程.【详解】解:设全年级个班,由题意得:,解得或(舍),,答:全年级一共10个班.本题主要考查了有实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.17、(1);(2);(3)见解析.【解析】

根据平面向量的知识,再利用三角形法即可求解.【详解】在此处键入公式。(1)与是平行向量;(2)=+=﹣+=﹣=+=﹣+=﹣(﹣)+=-++(3)∵+=+=如图所示,该题主要考查了平面向量的知识,注意掌握三角形法的应用.18、(1)点到轴的距离等于点到轴距离;(2);(1)1,1【解析】

(1)根据横坐标为点到y轴的距离;纵坐标为点到x轴的距离即可比较大小;(2)由点A1和点B重合时,需将△ABC向右移2个单位,向下移2个单位,据此求解可得;(1)根据点A的纵坐标得出向下平移的距离,由点B的横坐标得出向左平移的距离.【详解】解:(1)∵,∴点到轴的距离为1∵,点到轴距离为1∴点到轴的距离等于点到轴距离(2)点和点重合时,需将向右移2个单位,向下移2个单位,∴点的对应点的坐标是(1)平移△ABO至△A2B2O2,需要至少向下平移超过1单位,并且至少向左平移1个单位,才能△A2B2O2使位于第三象限.故答案为:1,1.本题主要考查点的意义与图形的变换-平移,注意:点到x轴的距离等于该点纵坐标的绝对值;点到y轴的距离等于该点横坐标的绝对值;平面直角坐标系中点的坐标的平移规律.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】

首先根据勾股定理计算出的长,进而得到的长,再根据点表示,可得点表示的数.【详解】解:由勾股定理得:,则,点表示,点表示,故答案为:.此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边边长的平方.20、【解析】

根据直角三角形斜边上的中线以及等腰三角形的性质即可求出答案.【详解】解:∵AB=AC,AF⊥BC,∴AF是△ABC的中线,∵D是AB的中点,∴DF是△ABC的中位线,设AB=BC=2x,∴DF=x,∵BE⊥AC,点D是AB的中点,点F是BC的中点,∴DE=AB=x,EF=BC=4,∵△DEF的周长为10,∴x+x+4=10,∴x=3,∴AC=6,∴由勾股定理可知:AF=故答案为:.本题考查直角三角形斜边上的中线,解题的关键是熟练运用直角三角形斜边上的中线,等腰三角形的性质以及勾股定理,本题属于中等题型.21、1【解析】

设一次函数解析式为y=kx+b,把两组对应值分别代入得到k、b的方程组,然后解方程组求出k、b的值,则可确定一次函数解析式,再计算自变量为0时的函数值即可.【详解】解:设一次函数解析式为y=kx+b,把x=1,y=3;x=2,y=5代入得,解得所以一次函数的解析式为:y=2x+1当x=0时,y=2x+1=1,即m=1.故答案为1.本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y的直代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.22、.【解析】

根据题中所给的条件可知,竿斜放就恰好等于门的对角线长,可与门的宽和高构成直角三角形,运用勾股定理可求出门高、宽、对角线长.【详解】解:根据勾股定理可得:

,即x2-8x+16+x2-4x+4=x2,

解得:x1=2(不合题意舍去),x2=10,

10-2=8(尺),

10-4=6(尺).

答:门高8尺,门宽6尺,对角线长10

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论