山南市重点中学2025届数学九上开学综合测试试题【含答案】_第1页
山南市重点中学2025届数学九上开学综合测试试题【含答案】_第2页
山南市重点中学2025届数学九上开学综合测试试题【含答案】_第3页
山南市重点中学2025届数学九上开学综合测试试题【含答案】_第4页
山南市重点中学2025届数学九上开学综合测试试题【含答案】_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共6页山南市重点中学2025届数学九上开学综合测试试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)方程的左边配成完全平方后所得方程为()A. B. C. D.2、(4分)如图1,在矩形ABCD中,动点E从点B出发,沿BADC方向运动至点C处停止,设点E运动的路程为x,△BCE的面积为y,如果y关于x的函数图象如图2所示,则矩形ABCD的周长为()A.20 B.21 C.14 D.73、(4分)下列运算正确的是()A. B.(m2)3=m5 C.a2•a3=a5 D.(x+y)2=x2+y24、(4分)下列根式中,属于最简二次根式的是()A.- B. C. D.5、(4分)已知y是x的正比例函数,且函数图象经过点,则在此正比例函数图象上的点是()A. B. C. D.6、(4分)如图,直线与相交于点,点的横坐标为,则关于的不等式的解集在数轴上表示正确的是()A. B.C. D.7、(4分)如图,在平行四边形ABCD中,AD=7,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A.2 B.52 C.3 D.8、(4分)一次函数与的图象如图所示,则下列结论:①k<0;②a<0,b<0;③当x=3时,y1=y2;④不等式的解集是x<3,其中正确的结论个数是()A.0 B.1 C.2 D.3二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)分式方程有增根,则m=_____________.10、(4分)如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=_____.11、(4分)当x=4时,二次根式的值为______.12、(4分)若式子在实数范围内有意义,则应满足的条件是_____________.13、(4分)关于x的不等式2x﹣a≤﹣1的解集如图所示,则a的取值范围是___.三、解答题(本大题共5个小题,共48分)14、(12分)如图,□ABCD中,过对角线BD上一点P做EF∥BCGH∥AB.(1)写出图中所有的平行四边形(包括□ABCD)的个数;(2)写出图中所有面积相等的平行四边形.15、(8分)如图,在平行四边形中,点,分别在边,的延长线上,且,分别与,交于点,.求证:.16、(8分)如图,在平面直角坐标系中,矩形的顶点、在坐标轴上,点的坐标为点从点出发,在折线段上以每秒3个单位长度向终点匀速运动,点从点出发,在折线段上以每秒4个单位长度向终点匀速运动.两点同时出发,当其中一个点到达终点时,另一个点也停止运动,连接.设两点的运动时间为,线段的长度的平方为,即(单位长度2).(1)当点运动到点时,__________,当点运动到点时,__________;(2)求关于的函数解析式,并直接写出自变量的取值范围.17、(10分)如图,已知四边形和四边形为正方形,点在线段上,点在同一直线上,连接,并延长交于点.(1)求证:.(2)若,,求线段的长.(3)设,,当点H是线段GC的中点时,则与满足什么样的关系式.18、(10分)已知关于x的方程有两个不相等的实数根.(1)求k的取值范围;(2)是否存在实数k,使此方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,说明理由.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)现有四根长,,,的木棒,任取其中的三根,首尾顺次相连后,能组成三角形的概率为______.20、(4分)如果一组数据:8,7,5,x,9,4的平均数为6,那么x的值是_____.21、(4分)如图,在ABCD中,对角线AC,BD相交于点O,若再增加一个条件,就可得出ABCD是菱形,则你添加的条件是___________.22、(4分)方程=2的解是_________23、(4分)已知菱形ABCD的面积是12cm2,对角线AC=4cm,则菱形的边长是______cm.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在菱形ABCD中,AC=8,BD=6,求△ABC的周长.25、(10分)如图,E、F分别为△ABC的边BC、CA的中点,延长EF到D,使得DF=EF,连接DA、DB、AE.(1)求证:四边形ACED是平行四边形;(2)若AB=AC,试说明四边形AEBD是矩形.26、(12分)已知,如图,在平面直角坐标系xoy中,直线l1:y=x+3分别交x轴、y轴于点A、B两点,直线l2:y=-3x过原点且与直线l1相交于C,点(1)求点C的坐标;(2)求出ΔBCO的面积;(3)当PA+PC的值最小时,求此时点P的坐标;

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】

根据配方法的步骤对方程进行配方即可.【详解】解:移项得:x2+6x=5,

配方可得:x2+6x+9=5+9,

即(x+3)2=14,

故选:A.本题考查用配方法解一元二次方程.熟练掌握用配方法解一元二次方程的具体步骤是解决此题的关键.2、C【解析】

分点E在AB段运动、点E在AD段运动时两种情况,分别求解即可.【详解】解:当点E在AB段运动时,y=BC×BE=BC•x,为一次函数,由图2知,AB=3,当点E在AD上运动时,y=×AB×BC,为常数,由图2知,AD=4,故矩形的周长为7×2=14,故选:C.本题考查的是动点图象问题,涉及到一次函数、图形面积计算等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.3、C【解析】A、=3,本选项错误;B、(m2)3=m6,本选项错误;C、a2•a3=a5,本选项正确;D、(x+y)2=x2+y2+2xy,本选项错误,故选C4、B【解析】试题解析:A、被开方数含分母,故A错误;B、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故B正确;C、被开方数含能开得尽方的因数或因式,故C错误;D、被开方数含能开得尽方的因数或因式,故D错误;故选B.考点:最简二次根式.5、D【解析】

利用待定系数法可求出正比例函数解析式,再利用一次函数图象上点的坐标特征可找出点(-4,6)在此正比例函数图象上,此题得解.【详解】解:设正比例函数解析式为y=kx(k≠0).∵正比例函数图象经过点(4,-6),∴-6=4k,∴.∵当x=-4时,y=x=6,∴点(-4,6)在此正比例函数图象上.故选D.本题考查了待定系数法求正比例函数解析式以及一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.6、C【解析】

由图像可知当x<-1时,,然后在数轴上表示出即可.【详解】由图像可知当x<-1时,,∴可在数轴上表示为:故选C.本题主要考查一次函数和一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.函数y1>y2时x的范围是函数y1的图象在y2的图象上边时对应的未知数的范围,反之亦然.7、D【解析】

利用平行四边形的性质以及角平分线的性质得出∠DEC=∠DCE,进而得出DE=DC=AB求出即可.【详解】解:∵在▱ABCD中,CE平分∠BCD交AD于点E,∴∠DEC=∠ECB,∠DCE=∠ECB,AB=DC,∴∠DEC=∠DCE,∴DE=DC=AB,∵AD=7,AE=3,∴DE=AD-AE=1∴AB=DE=1.故选:D.此题主要考查了平行四边形的性质以及角平分线的性质,得出DE=DC=AB是解题关键.8、D【解析】

解:根据一次函数的图象可得:a<0,b>0,k<0,则①正确,②错误;根据一次函数和方程以及不等式的关系可得:③和④是正确的故选:D.本题考查一次函数的图象及一次函数与不等式.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】分式方程去分母得:x+x﹣1=m,根据分式方程有增根得到x﹣1=0,即x=1,将x=1代入整式方程得:1+1﹣1=m,则m=1,故答案为1.10、【解析】试题分析:根据菱形的对角线互相垂直平分求出OA=4、OB=3,再利用勾股定理列式求出AB=5,然后根据△AOB的面积列式得,解得OH=.故答案为.点睛:此题主要考查了菱形的性质,解题时根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式求出AB,然后根据△AOB的面积列式计算即可得解.11、0【解析】

直接将,代入二次根式解答即可.【详解】解:把x=4代入二次根式=0,故答案为:0此题主要考查了二次根式的定义,直接将代入求出,利用二次根式的性质直接开平方是解决问题的关键.12、【解析】

直接利用二次根式的定义分析得出答案.【详解】解:二次根式在实数范围内有意义,则x-1≥0,解得:x≥1.故答案为:x≥1.此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.13、1.【解析】

首先计算出不等式的解集x≤,再结合数轴可得不等式的解集为x≤1,进而得到方程=1,解方程可得答案.【详解】2x﹣a≤﹣1,x≤,∵解集是x≤1,∴=1,解得:a=1,故答案为1.此题主要考查了在数轴上表示不等式的解集,关键是正确解不等式.三、解答题(本大题共5个小题,共48分)14、(1)9个;(2)见解析【解析】

(1)根据平行四边形的性质可得平行四边形的个数;(2)根据平行四边形的性质:平行四边形的对角线将平行四边形的面积平分,可推出3对平行四边形的面积相等.【详解】(1)∵在▱ABCD中,EF∥BC,GH∥AB,∴四边形EBHP、PHCF、PFDG、AEPG、ABHG、GHCD、BCFE、AEFD、ABCD均为平行四边形,∴图中所有的平行四边形(包括□ABCD)的个数为9个(2)∵四边形ABCD是平行四边形,∴S△ABD=S△CBD,∵BP是平行四边形BEPH的对角线,∴S△BEP=S△BHP,∵PD是平行四边形GPFD的对角线,∴S△GPD=S△FPD,∴S△ABD-S△BEP-S△GPD=S△BCD-S△BHP-S△PFD,即S▱AEPG=S▱HCFP,∴S▱ABHG=S▱BCFE,同理S▱AEFD=S▱HCDG,即:S▱ABHG=S▱BCFE,S▱AGPE=S▱HCFP,S▱AEFD=S▱HCDG,本题考查了平行四边形的判定与性质,熟知平行四边形的一条对角线可以把平行四边形分成两个全等的三角形,可以把平行四边形的面积平分是解题的关键.15、见详解【解析】

利用平行四边形的性质,结合条件可得出AF=EC,再利用全等三角形的判定与性质定理,即可得到结论.【详解】∵在平行四边形中,∴AD=BC,∠A=∠C,AD∥BC,∴∠E=∠F,∵,∴AF=EC,在∆AGF与∆CHE中,∵,∴∆AGF≅∆CHE(ASA),∴AG=CH.本题主要考查平行四边形的性质定理以及三角形全等的判定和性质定理,掌握平行四边形的性质以及ASA证三角形全等,是解题的关键.16、(1)1,;(2).【解析】

(1)由点的坐标为可知OA=3,OB=4,故)当点运动到点时,;当点运动到点时,t=;(2)分析题意,d与t的函数关系应分为①当时,利用勾股定理在中,,,.计算即可得:.②当时,过点作,垂足为,利用勾股定理:在中,,,故而.即.③当时,利用勾股定理:在中,,,所以.即.【详解】解:(1)1,;(2)①如图1,当时,∵在中,,,∴.即.②如图2,当时,过点作,垂足为,∵四边形为矩形,∴.∴四边形为矩形.∴.∴.∴.∴在中,,,∴.即.③如图3,当时,∵在中,,,∴.即.综上所述,.本题考查了动点问题与长度关系,灵活运用勾股定理进行解题是解题的关键.17、(1)见解析;(2);(3)().【解析】

(1)先证明△GDC≌△EDA,得∠GCD=∠EAD,推出AH⊥GC;(2)根据S△AGC=•AG•DC=•GC•AH,即可解决问题;(3)根据垂直平分线的性质可得结论.【详解】(1)在△GDC和△EDA中,,∴△GDC≌△EDA,∴∠GCD=∠EAD,∵∠HEC=∠DEA,∴∠EHC=∠EDA=90°,∴AH⊥GC;(2)∵AD=3,DE=1,∴GC=AE=,∵∠DAE+∠AED=90°,∠DEA=∠CEH,∴∠DCG+∠HEC=90°,∴∠EHC=90°,∴AH⊥GC,∵S△AGC=•AG•DC=•GC•AH,∴×4×3=××AH,∴AH=.(3)由(1)得,AH即GC的中垂线∴AG=AC(中垂线的性质定理)∴()本题考查正方形的性质、全等三角形的判定和性质、勾股定理、三角形面积等知识.18、(1),且;(2)不存在,理由见解析.【解析】

(1)根据方程有两个不相等的实数根可知△=,求得k的取值范围;(2)可假设存在实数k,使得方程的两个实数根,的倒数和为0,列出方程即可求得k的值,然后把求得的k值代入原式中看看与已知是否矛盾,如果矛盾则不存在,如果不矛盾则存在.【详解】解:(1)∵方程有两个不相等的实数根,∴△=,且,解得,且,即k的取值范围是,且;(2)假设存在实数k,使得方程的两个实数根,的倒数和为0,则,不为0,且,即,且,解得,而与方程有两个不相等实根的条件,且矛盾,故使方程的两个实数根的倒数和为0的实数k不存在.本题考查根与系数的关系;一元二次方程的定义;根的判别式.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】

先展示所有可能的结果数,再根据三角形三边的关系得到能组成三角形的结果数,然后根据概率公式求解.【详解】解:∵现有四根长30cm、40cm、70cm、90cm的木棒,任取其中的三根,可能结果有:30cm、40cm、70cm;30cm、40cm、90cm;30cm、70cm、90cm;40cm、70cm、90cm;其中首尾相连后,能组成三角形的有:30cm、70cm、90cm;40cm、70cm、90cm;共有4种等可能的结果数,其中有2种能组成三角形,

所以能组成三角形的概率=.故答案为:.本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.20、1【解析】

利用平均数的定义,列出方程=6即可求解.【详解】解:根据题意知=6,解得:x=1,故答案为1.本题考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.21、AB=BC或BC=CD或CD=AD或AD=AB或AC⊥BD或AB=BC=CD=DA【解析】根据一组邻边相等的平行四边形是菱形可得,添加的条件可以是:AB=BC或BC=CD或CD=AD或AD=AB;根据对角线互相垂直的平行四边形是菱形可得,添加的条件可以是:AC⊥BD;根据四边相等的平行四边形是菱形可得,添加的条件可以是:AB=BC=CD=DA.故答案是:AB=BC或BC=CD或CD=AD或AD=AB或AC⊥BD或AB=BC=CD=DA.22、【解析】【分析】方程两边平方可得到整式方程,再解之可得.【详解】方程两边平方可得x2-3x=4,即x2-3x-4=0,解得x1=-1,x2=4故答案为:【点睛】本题考核知识点:二次根式,无理方程.解题关键点:化无理方程为整式方程.23、【解析】分析:根据菱形的面积公式求出另一对角线的长.然后因为菱形的对角线互相垂直平分,利用勾股定理求出菱形的边长.详解:由菱形的面积公式,可得另一对角线长12×2÷4=6,∵菱形的对角线互相垂直平分,根据勾股定理可得菱形的边长=cm.故答案为.点睛:此题主要考查菱形的性质和菱形的面积公式,关键是掌握菱形的两条对角线互相垂直.二、解答题(本大题共3个小题,共30分)24、1.【解析】

利用菱形的性质结合勾股定理得出AB的长,进而得出答案.【详解】∵在菱形ABCD中,AC=8,BD=6,∴AB=BC,∠AOB=90°,AO=4,BO=3,∴BC=AB=,∴△ABC的周长=AB+BC+AC=5+5+8=1.本题主要考查菱形的性质,利用勾股定理,求出菱形的边长,是解题的关键.25、(1)证明见解析;(2)证明见解析【解析】

(1)由已知可得:EF是△ABC的中位线,则可得EF∥AB,EF=AB,又由D

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论