版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页山东省潍坊联考2025届数学九上开学经典模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若点P(a,b)是正比例函数y=-2A.2a+3b=0 B.2a-3b=0 C.3a+2b=0 D.3a-2b=02、(4分)已知y=(k−3)x+2是一次函数,那么k的值为()A.±3 B.3 C.−3 D.±13、(4分)如图,在中,于点若则等于()A. B. C. D.4、(4分)在平行四边形中cm,cm,则平行四边形的周长为()A.cm B.cm C.cm D.cm5、(4分)如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式组的解集是()A. B. C. D.6、(4分)如图,在中,和的平分线相交于点,过点作交于点,交于点,过点作于点,某班学生在一次数学活动课中,探索出如下结论,其中错误的是()A. B.点到各边的距离相等C. D.设,,则7、(4分)下列从左到右的变形,是因式分解的是A. B.C. D.8、(4分)如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为()A.11 B.16 C.19 D.22二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)一组正整数2,4,5,从小到大排列,已知这组数据的中位数和平均数相等,那么的值是______.10、(4分)如图,在矩形ABCD中,AB=6cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,点D落在处,AF的长为___________.11、(4分)如图,已知:∠MON=30∘,点A1、A2、A3在射线ON上,点B1、B2、B3...在射线OM上,ΔA1B12、(4分)如图,直线y=-x+4分别与x轴,y轴交于点A,B,点C在直线AB上,D是y轴右侧平面内一点,若以点O,A,C,D为顶点的四边形是菱形,则点D的坐标是_______________.13、(4分)超速行驶是交通事故频发的主要原因之一.交警部门统计某天7:00—9:00经过高速公路某测速点的汽车的速度,得到频数分布折线图.若该路段汽车限速为110km/h,则超速行驶的汽车有_________辆.三、解答题(本大题共5个小题,共48分)14、(12分)在平面直角坐标系中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),其中a为常数,则称点Q是点P的“a级关联点”.例如,点P(1,4)的“3级关联点”为Q(3×1+4,1+3×4),即Q(7,13).(1)已知点A(-2,6)的“级关联点”是点A1,点B的“2级关联点”是B1(3,3),求点A1和点B的坐标;(2)已知点M(m-1,2m)的“-3级关联点”M′位于y轴上,求M′的坐标;(3)已知点C(-1,3),D(4,3),点N(x,y)和它的“n级关联点”N′都位于线段CD上,请直接写出n的取值范围.15、(8分)在四边形ABCD中,E、F分别是边BC、CD的中点,连接AE,AF.(1)如图1,若四边形ABCD的面积为5,则四边形AECF的面积为____________;(2)如图2,延长AE至G,使EG=AE,延长AF至H,使FH=AF,连接BG、GH、HD、DB.求证:四边形BGHD是平行四边形;(3)如图3,对角线AC、BD相交于点M,AE与BD交于点P,AF与BD交于点N.直接写出BP、PM、MN、ND的数量关系.16、(8分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=-x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?17、(10分)计算:+--18、(10分)如图,在平面直角坐标系中,四边形为正方形,已知点、,点、在第二象限内.(1)点的坐标___________;(2)将正方形以每秒个单位的速度沿轴向右平移秒,若存在某一时刻,使在第一象限内点、两点的对应点、正好落在某反比例函数的图象上,请求出此时的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在轴上的点和反比例函数图象上的点,使得以、、、四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点、的坐标;若不存在,请说明理由.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)分解因式:x2-2x+1=__________.20、(4分)如图,平行四边形ABCD中,∠B=60°,AB=8cm,AD=10cm,点P在边BC上从B向C运动,点Q在边DA上从D向A运动,如果P,Q运动的速度都为每秒1cm,那么当运动时间t=_____秒时,四边形ABPQ是直角梯形.21、(4分)比较大小:__________-1.(填“”、“”或“”)22、(4分)如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,则△ABD的面积是______.23、(4分)在平行四边形ABCD中,,则的度数是______°.二、解答题(本大题共3个小题,共30分)24、(8分)如图1,已知正方形ABCD的边长为6,E是CD边上一点(不与点C重合),以CE为边在正方形ABCD的右侧作正方形CEFG,连接BF、BD、FD.(1)当点E与点D重合时,△BDF的面积为;当点E为CD的中点时,△BDF的面积为.(2)当E是CD边上任意一点(不与点C重合)时,猜想S△BDF与S正方形ABCD之间的关系,并证明你的猜想;
(3)如图2,设BF与CD相交于点H,若△DFH的面积为,求正方形CEFG的边长.25、(10分)如图1,已知△ABC,AB=AC,以边AB为直径的⊙O交BC于点D,交AC于点E,连接DE.(1)求证:DE=DC.(2)如图2,连接OE,将∠EDC绕点D逆时针旋转,使∠EDC的两边分别交OE的延长线于点F,AC的延长线于点G.试探究线段DF、DG的数量关系.26、(12分)一次函数y1=kx+b和y2=﹣4x+a的图象如图所示,且A(0,4),C(﹣2,0).(1)由图可知,不等式kx+b>0的解集是;(2)若不等式kx+b>﹣4x+a的解集是x>1.①求点B的坐标;②求a的值.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】
由函数图象与函数表达式的关系可知,点A满足函数表达式,可将点A的坐标代入函数表达式,得到关于a、b的等式;再根据等式性质将关于a、b的等式进行适当的变形即可得出正确选项.【详解】∵点A(a,b)是正比例函数y=-2∴b=-2∴2a+3b=0.故选A本题考查函数图象上点的坐标与函数关系式的关系,等式的基本性质,能根据等式的基本性质进行适当变形是解决本题的关键.2、C【解析】
根据题意直接利用一次函数的定义,进行分析得出k的值即可.【详解】解:∵y=(k−2)x+2是一次函数,∴|k|-2=2,k-2≠0,解得:k=-2.故选:C.本题主要考查一次函数的定义,注意掌握一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为2.3、B【解析】
根据平行四边形的性质和三角形的内角和定理求解.【详解】在中,于点∴∵∴在中,故选:B本题考查了平行四边形的性质和三角形内角和定理,解题的关键在于把已知角转化到中求解.4、D【解析】
根据平行四边形的性质得出对边相等,进而得出平行四边形ABCD的周长.【详解】解:∵平行四边形ABCD中,AD=4cm,AB=3cm,
∴AD=BC=4cm,AB=CD=3cm,
则行四边形ABCD的周长为:3+3+4+4=14(cm).
故选:D.此题主要考查了平行四边形的性质,熟练掌握平行四边形对边之间的关系是解题关键.5、A【解析】
由于一次函数y1同时经过A、P两点,可将它们的坐标分别代入y1的解析式中,即可求得k、b与m的关系,将其代入所求不等式组中,即可求得不等式的解集.【详解】由于直线y1=kx+b过点A(0,2),P(1,m),则有:解得.∴直线y1=(m−2)x+2.故所求不等式组可化为:mx>(m−2)x+2>mx−2,不等号两边同时减去mx得,0>−2x+2>−2,解得:1<x<2,故选A.本题属于对函数取值的各个区间的基本情况的理解和运用6、C【解析】
利用角平分线的性质、等腰三角形的判定与性质逐一判定即可.【详解】∵在△ABC中,∠ABC和∠ACB的平分线相交于点O∴∠OBC=∠ABC,∠OCB=∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°-∠A∴∠BOC=180°-(∠OBC+∠OCB)=90°+∠A,故C错误;∵∠EBO=∠CBO,∠FCO=∠BCO,∴∠EBO=∠EOB,∠FCO=∠FOC,∴BE=OE,CF=OF∴EF=EO+OF=BE+CF,故A正确;由已知,得点O是的内心,到各边的距离相等,故B正确;作OM⊥AB,交AB于M,连接OA,如图所示:∵在△ABC中,∠ABC和∠ACB的平分线相交于点O∴OM=∴,故D选项正确;故选:C.此题主要考查运用角平分线的性质、等腰三角形的判定与性质,解题关键是注意数形结合思想的运用.7、D【解析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【详解】根据因式分解的定义得:从左边到右边的变形,是因式分解的是.其他不是因式分解:A,C右边不是积的形式,B左边不是多项式.故选D.本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.8、D【解析】
阴影部分的周长为AD+DE+EA+EB′+B′C+EC,
=AD+DE+EC+EA+EB′+B′C,
=AD+DC+AB′+B′C,
=3+8+8+3
=1.故选D.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】
根据这组数据的中位数和平均数相等,得出(4+5)÷2=(2+4+5+x)÷4,求出x的值即可.【详解】∵这组数据的中位数和平均数相等,∴(4+5)÷2=(2+4+5+x)÷4,解得:x=1.故答案为:1.此题考查了中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,关键是根据中位数和平均数相等列出方程.10、【解析】
根据对折之后对应边长度相同,联立直角三角形中勾股定理即可求解.【详解】设∵矩形纸片中,,现将其沿对折,使得点C与点A重合,点D落在处,∴,在中,,即解得,故答案为:.本题考查了矩形的性质和勾股定理的应用,解题的关键在于找到对折之后对应边相等关系和勾股定理中的等量关系.11、32a【解析】
根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4a,A4B4=8B1A2=8a,A5B5=16B1A2…进而得出答案【详解】解:如图∵△A1B1A2是等边三角形,
∴A1B1=A2B1,∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°-120°-30°=30°,
又∵∠3=60°,
∴∠5=180°-60°-30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=a,
∴A2B1=a,
∵△A2B2A3、△A3B3A4是等边三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴A2B2=2B1A2,B3A3=2B2A3,
∴A3B3=4B1A2=4a,
A4B4=8B1A2=8a,
A5B5=16B1A2=16a,
以此类推:A6B6=32B1A2=32a.
故答案为:32a.此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.12、(2,−2)或(6,2).【解析】
设点C的坐标为(x,-x+4).分两种情况,分别以C在x轴的上方、C在x轴的下方做菱形,画出图形,根据菱形的性质找出点C的坐标即可得出D点的坐标.【详解】∵一次函数解析式为线y=-x+4,令x=0,解得y=4∴B(0,4),令y=0,解得x=4∴A(4,0),如图一,∵四边形OADC是菱形,设C(x,-x+4),∴OC=OA=,整理得:x2−6x+8=0,解得x1=2,x2=4,∴C(2,2),∴D(6,2);如图二、如图三,∵四边形OADC是菱形,设C(x,-x+4),∴AC=OA=,整理得:x2−8x+12=0,解得x1=2,x2=6,∴C(6,−2)或(2,2)∴D(2,−2)或(−2,2)∵D是y轴右侧平面内一点,故(−2,2)不符合题意,故答案为(2,−2)或(6,2).本题考查了一次函数图象上点的坐标特征以及菱形的性质,解题的关键是确定点C、D的位置.本题属于中档题,难度不大,在考虑菱形时需要分类讨论.13、80.【解析】
根据图中的信息,找到符合条件的数据,进行计算即可.【详解】解:读图可知,超过限速110km/h的汽车有60+20=80(辆).故答案为80.本题考查读取频数分布折线图和利用统计图获取信息的能力,对此类问题,必须要认真观察统计图、分析比较,充分利用图中的数据,从而作出正确判断.三、解答题(本大题共5个小题,共48分)14、(1)(1,1)(2)(0,﹣16)(3)【解析】
(1)根据关联点的定义,结合点的坐标即可得出结论;(2)根据关联点的定义和点M(m﹣1,2m)的“﹣3级关联点”M′位于y轴上,即可求出M′的坐标;(3)因为点C(﹣1,3),D(4,3),得到y=3,由点N(x,y)和它的“n级关联点”N′都位于线段CD上,可得到方程组,解答即可.【详解】(1)∵点A(﹣2,6)的“级关联点”是点A1,∴A1(﹣2×+6,﹣2+×6),即A1(5,1).设点B(x,y),∵点B的“2级关联点”是B1(3,3),∴解得∴B(1,1).(2)∵点M(m﹣1,2m)的“﹣3级关联点”为M′(﹣3(m﹣1)+2m,m﹣1+(﹣3)×2m),M′位于y轴上,∴﹣3(m﹣1)+2m=0,解得:m=3∴m﹣1+(﹣3)×2m=﹣16,∴M′(0,﹣16).(3)∵点N(x,y)和它的“n级关联点”N′都位于线段CD上,∴N′(nx+y,x+ny),∴,,∴x=3-3n,∴,解得.本题考查了一次函数图象上的坐标的特征,“关联点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.15、(1)(2)证明见解析(3).【解析】
(1)连接AC,根据三角形中线把三角形分成两个面积相等的三角形进行解答即可得;(2)连接EF,根据三角形中位线定理可得到BD与GH平行且相等,由此即可得证;(3)如图,延长PE至点Q,使EQ=EP,连接CQ,延长NF至点O,使OF=NG,连接CO,通过证明△BPE≌△CQE可得BP=CQ,BP//CQ,同理:CO=ND,CO//ND,从而可得Q、C、O三点共线,继而通过证明△APM∽△AQC,可得PM:CQ=AM:AC,同理:MN:CO=AM:AC,即可得答案.【详解】(1)如图,连接AC,则有S△ABC+S△ACD=S四边形ABCD=5,∵E、F分别为BC、CD中点,∴S△AEC=S△ABC,S△AFC=S△ADC,∴S四边形AECF=S△AEC+S△AFC=S△ABC+S△ADC=S四边形ABCD=,故答案为:;(2)如图,连接EF,∵E、F分别是BC,CD的中点,∴EF∥BD,EF=BD.,∵EG=AE,FH=AF,∴EF∥GH,EF=GH.,∴BD∥GH,BD=GH.,∴四边形BGHD是平行四边形;(3)如图,延长PE至点Q,使EQ=EP,连接CQ,延长NF至点O,使OF=NG,连接CO,在△BPE和△CQE中,∴△BPE≌△CQE(SAS),∴BP=CQ,∠PBE=∠QCE,∴BP//CQ,同理:CO=ND,CO//ND,∴Q、C、O三点共线,∴BD//OQ,∴△APM∽△AQC,∴PM:CQ=AM:AC,同理:MN:CO=AM:AC,∴.本题考查了三角形中线的性质、三角形中位线定理、平行四边形的判定、全等三角形的判定与性质、相似三角形的判定与性质等,综合性较强,熟练掌握相关知识、正确添加辅助线是解题的关键.16、(1)w=-x2+90x-1800;(2)当x=45时,w有最大值,最大值是225(3)该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元【解析】试题分析:(1)根据销售利润=单个利润×销售量,列出式子整理后即可得;(2)由(1)中的函数解析式,利用二次函数的性质即可得;(3)将w=200代入(1)中的函数解析式,解方程后进行讨论即可得.试题解析:(1)w=(x﹣30)•y=(﹣x+60)(x﹣30)=﹣x2+30x+60x﹣1800=﹣x2+90x﹣1800,w与x之间的函数解析式w=﹣x2+90x﹣1800;(2)根据题意得:w=﹣x2+90x﹣1800=﹣(x﹣45)2+225,∵﹣1<0,当x=45时,w有最大值,最大值是225;(3)当w=200时,﹣x2+90x﹣1800=200,解得x1=40,x2=50,∵50>42,x2=50不符合题意,舍去,答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.17、2+3【解析】
根据二次根式的运算法则即可求出答案.【详解】原式=4+3﹣﹣=2+3本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算,本题属于基础题型.18、(1)点坐标为;(2),;(3)存在,,或,或,【解析】
(1)证明△DFA≌△AEB(AAS),则DF=AE=3,BE=AF=1,即可求解;(2)t秒后,点D′(−7+2t,3)、B′(−3+2t,1),则k=(−7+2t)×3=(−3+2t)×1,即可求解;(3)分为平行四边形的一条边时和为平行四边形对角线时两种情况,分别求解即可.【详解】解:(1)过点、分别作轴、轴交于点、,,,,又,,,,,点坐标为;(2)秒后,点、,则,解得:,则,(3)存在,理由:设:点,点,,①在第一象限,且为平行四边形的一条边时,图示平行四边形,点向左平移个单位、向上平移个单位得到点,同理点向左平移个单位、向上平移个单位为得到点,即:,,,解得:,,,故点、点;②在第一象限,且当为平行四边形对角线时,图示平行四边形,中点坐标为,该中点也是的中点,即:,,,解得:,,,故点、;③在第三象限,且当为平行四边形的一条边时,图示平行四边形,点向左平移个单位、向上平移个单位得到点,同理点向右平移个单位、向下平移个单位为得到点,即:,,,解得:,,,故点、点;综上:,或,或,本题考查的是反比例函数综合运用,涉及到三角形全等、图形平移等知识点,其中(3),要通过画图确定图形可能的位置再求解,避免遗漏.一、填空题(本大题共5个小题,每小题4分,共20分)19、(x-1)1.【解析】
由完全平方公式可得:故答案为.错因分析容易题.失分原因是:①因式分解的方法掌握不熟练;②因式分解不彻底.20、1【解析】
过点A作AE⊥BC于E,因为AD∥BC,所以当AE∥QP时,则四边形ABPQ是直角梯形,利用已知条件和路程与速度的关系式即可求出时间t的值【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,过点A作AE⊥BC于E,∴当AE∥QP时,则四边形ABPQ是直角梯形,∵∠B=60°,AB=8cm,∴BE=4cm,∵P,Q运动的速度都为每秒1cm,∴AQ=10﹣t,AP=t,∵BE=4,∴EP=t﹣4,∵AE⊥BC,AQ∥EP,AE∥QP,∴QP⊥BC,AQ⊥AD,∴四边形AEPQ是矩形,∴AQ=EP,即10﹣t=t﹣4,解得t=1,故答案为:1.此题考查直角梯形,平行四边形的性质,解题关键在于作辅助线21、【解析】
先由,得到>,再利用两个负实数绝对值大的反而小得到结论.【详解】解:∵>,∴,∴>.故答案为:本题考查了实数大小的比较,关键要熟记实数大小的比较方法:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.22、1【解析】
延长AD到点E,使DE=AD=6,连接CE,可证明△ABD≌△CED,所以CE=AB,再利用勾股定理的逆定理证明△CDE是直角三角形,即△ABD为直角三角形,进而可求出△ABD的面积.【详解】解:延长AD到点E,使DE=AD=6,连接CE,∵AD是BC边上的中线,∴BD=CD,在△ABD和△CED中,,∴△ABD≌△CED(SAS),∴CE=AB=5,∠BAD=∠E,∵AE=2AD=12,CE=5,AC=13,∴CE2+AE2=AC2,∴∠E=90°,∴∠BAD=90°,即△ABD为直角三角形,∴△ABD的面积=AD•AB=1.故答案为1.本题考查了全等三角形的判定和性质、勾股定理的逆定理的运用,解题的关键是添加辅助线,构造全等三角形.23、100°【解析】如图所示:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,∵∠A+∠C=160°,∴∠A=∠C=80°,∴∠B的度数是:100°.故答案是:100°.二、解答题(本大题共3个小题,共30分)24、(1)1,1;(2)S△BDF=S正方形ABCD,证明见解析;(3)2【解析】
(1)根据三角形的面积公式求解;(2)连接CF,通过证明BD∥CF,可得S△BDF=S△BDC=S正方形ABCD;(3)根据S△BDF=S△BDC可得S△BCH=S△DFH=,由三角形面积公式可求CH,DH的长,再由三角形面积公式求出EF的长即可.【详解】(1)∵当点E与点D重合时,
∴CE=CD=6,
∵四边形ABCD,四边形CEFG是正方形,
∴DF=CE=AD=AB=6,
∴S△BDF=×DF×AB=1,当点E为CD的中点时,如图,连接CF,∵四边形ABCD和四边形CEFG均为正方形;
∴∠CBD=∠GCF=25°,
∴BD∥CF,
∴S△BDF=S△BDC=S正方形ABCD=×6×6=1,故答案为:1,1.(2)S△BDF=S
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年专属版货车租赁协议含司机服务2篇
- 2024年紧致抗衰老乳液订购合同3篇
- 二零二四年度技术服务与技术转让合同3篇
- 2024年资料员与公司劳动协议3篇
- 2024年度智能家居系统施工合同2篇
- 鼻神经胶质瘤的临床特征
- 2024年版权授权协议:计算机软件使用合同3篇
- 地铁站外立面更新改造技术规范
- 网络信息安全管理法
- 输卵管妊娠的临床护理
- 《公务员心理健康》
- 人工流产危害及避孕方法指导讲座
- 主变压器试验报告模板
- 旧社区改造案例课件
- 经皮肾镜取石、碎石术课件
- 灭火器维修检测报告
- 日间化疗相关管理制度
- 人教版小学数学三年级下册全册教学课件(2023年2月修订)
- 信息社会的伦理道德 课件【知识精讲+备课精研】高中信息技术教科版(2019)必修2
- 人际交往与沟通技巧学习通课后章节答案期末考试题库2023年
- 2023年高考英语必备-语法填空八-自然环境(教师版)
评论
0/150
提交评论