版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题7.5复数的三角表示(重难点题型精讲)1.复数的三角表示式(1)复数的三角表示式
如图,我们可以用刻画向量大小的模r和刻画向量方向的角来表示复数z.
一般地,任何一个复数z=a+bi都可以表示成r(+i)的形式.(2)辅角的主值
显然,任何一个不为零的复数的辐角有无限多个值,且这些值相差2π的整数倍.例如,复数i的辐角是+2kπ,其中k可以取任何整数.对于复数0,因为它对应着零向量,而零向量的方向是任意的,所以复数0的辐角也是任意的.我们规定在0<2π范围内的辐角的值为辐角的主值.通常记作argz,即0argz<2π.(3)三角形式下的复数相等每一个不等于零的复数有唯一的模与辐角的主值,并且由它的模与辐角的主值唯一确定.因此,两个非零复数相等当且仅当它们的模与辐角的主值分别相等.2.复数乘法运算的三角表示及其几何意义(1)复数乘法运算的三角表示
根据复数的乘法法则以及两角和的正弦、余弦公式,可以得到
=(+i)(+i)=[(+)+i(+)],
即(+i)(+i)=[(+)+i(+)].
这就是说,两个复数相乘,积的模等于各复数的模的积,积的辐角等于各复数的辐角的和.(2)几何意义两个复数,相乘时,可以像图那样,先分别画出与,对应的向量,,然后把向量绕点O按逆时针方向旋转角(如果<0,就要把绕点O按顺时针方向旋转角||),再把它的模变为原来的倍,得到向量,表示的复数就是积.这是复数乘法的几何意义.3.复数除法运算的三角表示及其几何意义(1)复数除法运算的三角表示设=(+i),=(+i),且≠,因为(+i)[(-)+i(-)]=(+i),所以根据复数除法的定义,有=[(-)+i(-)].这就是说,两个复数相除,商的模等于被除数的模除以除数的模所得的商,商的辐角等于被除数的辐角减去除数的辐角所得的差.(2)几何意义如图,两个复数,相除时,先分别画出与,对应的向量,,然后把向量绕点O按顺时针方向旋转角(如果<0,就要把绕点O按逆时针方向旋转角||),再把它的模变为原来的倍,得到向量,表示的复数就是商.这是复数除法的几何意义.【题型1求辅角主值】【方法点拨】求辅角主值时,要考虑角的范围,因此一定要用“模非负,角相同,余弦前,加号连”来判断是否为三角形式,再进行求解.【例1】(2022秋·辽宁·高二开学考试)z=1−3i(i是虚数单位),则z的辐角主值argzA.53π B.116π C.【变式1-1】(2023·高一课时练习)2的辐角主值为(
).A.π2 B.3π2 C.0【变式1-2】(2022·高一课时练习)复数cosπ4−A.π4 B.3π4 C.5π4【变式1-3】(2022·高一课时练习)设π<θ<5π4,则复数cos2θ+A.2π−3θ B.3θ−2π C.3θ D.3θ−π【题型2复数的代数形式与三角形式的互化】【方法点拨】复数的代数形式转化为三角形式的步骤:①求出模;②确定辐角的主值;③写出三角形式.将复数的三角形式化为代数形式,只需要将其中蕴含的三角函数值求出数值即可.【例2】(2022·高一课时练习)将下列复数表示成三角形式(1)tanθ+(2)1+cos【变式2-1】(2022·高一课时练习)化下列复数为三角形式.(1)-1+3i;(2)1-i;(3)2i;(4)-1.【变式2-2】(2022·高一课时练习)将下列复数化为三角形式:(1)sin5π(2)cosα−【变式2-3】(2022·全国·高一专题练习)将下列复数化为三角形式:(1)−3(2)−1−3(3)−2cos(4)2sin【题型3三角形式下的复数的乘、除运算】【方法点拨】复数三角形式下的乘法法则:模数相乘,辐角相加;复数三角形式下的乘方法则:模数乘方,辐角n倍;复数三角形式下的除法法则:模数相除,辐角相减.【例3】(2022春·江苏无锡·高二江苏省天一中学校考期中)棣莫弗公式(cosx+isinx)A.第一象限 B.第二象限 C.第三象限 D.第四象限【变式3-1】(2023·高一课时练习)计算2cos75°+iA.−62+C.22−6【变式3-2】(2022·高一课时练习)已知复数z1=2cosπ12+isinπ12,z2=3cosA.6cosπ4C.3-3i D.3+3i【变式3-3】(2022·全国·高三专题练习)在复平面内,复数z=a+bi(a,b∈R)对应向量为OZ(O为坐标原点),设|OZ|=r,以射线Ox为始边,OZ为终边逆时针旋转所得的角为θ,则z=r(cosθ+isinθ),法国数学家棣莫弗发现棣莫弗定理:z1=rA.1024−10243i B.−1024+10243i C.【题型4复数乘、除运算的几何意义的应用】【方法点拨】根据复数乘、除运算的几何意义,进行求解即可.【例4】把复数1+i对应的向量按顺时针方向旋转2π3A.1−32+C.−1+32+【变式4-1】设复数z1=−1−i在复平面上对应向量OZ1,将OZ1按顺时针方向旋转56π后得到向量OZ2A.2−3 B.−2+3 C.2+3【变式4-2】(2022·高一课时练习)将复数1+i对应的向量OM绕原点按逆时针方向旋转π4,得到的向量为OM1A.2i B.2i C.22+【变式4-3】设复数z1=2sinθ+icosθπ4<θ<π2在复平面上对应向量OZ1,将向量OZ1A.2tanθ+12tanθ−1 B.2tan专题7.5复数的三角表示(重难点题型精讲)1.复数的三角表示式(1)复数的三角表示式
如图,我们可以用刻画向量大小的模r和刻画向量方向的角来表示复数z.
一般地,任何一个复数z=a+bi都可以表示成r(+i)的形式.(2)辅角的主值
显然,任何一个不为零的复数的辐角有无限多个值,且这些值相差2π的整数倍.例如,复数i的辐角是+2kπ,其中k可以取任何整数.对于复数0,因为它对应着零向量,而零向量的方向是任意的,所以复数0的辐角也是任意的.我们规定在0<2π范围内的辐角的值为辐角的主值.通常记作argz,即0argz<2π.(3)三角形式下的复数相等每一个不等于零的复数有唯一的模与辐角的主值,并且由它的模与辐角的主值唯一确定.因此,两个非零复数相等当且仅当它们的模与辐角的主值分别相等.2.复数乘法运算的三角表示及其几何意义(1)复数乘法运算的三角表示
根据复数的乘法法则以及两角和的正弦、余弦公式,可以得到
=(+i)(+i)=[(+)+i(+)],
即(+i)(+i)=[(+)+i(+)].
这就是说,两个复数相乘,积的模等于各复数的模的积,积的辐角等于各复数的辐角的和.(2)几何意义两个复数,相乘时,可以像图那样,先分别画出与,对应的向量,,然后把向量绕点O按逆时针方向旋转角(如果<0,就要把绕点O按顺时针方向旋转角||),再把它的模变为原来的倍,得到向量,表示的复数就是积.这是复数乘法的几何意义.3.复数除法运算的三角表示及其几何意义(1)复数除法运算的三角表示设=(+i),=(+i),且≠,因为(+i)[(-)+i(-)]=(+i),所以根据复数除法的定义,有=[(-)+i(-)].这就是说,两个复数相除,商的模等于被除数的模除以除数的模所得的商,商的辐角等于被除数的辐角减去除数的辐角所得的差.(2)几何意义如图,两个复数,相除时,先分别画出与,对应的向量,,然后把向量绕点O按顺时针方向旋转角(如果<0,就要把绕点O按逆时针方向旋转角||),再把它的模变为原来的倍,得到向量,表示的复数就是商.这是复数除法的几何意义.【题型1求辅角主值】【方法点拨】求辅角主值时,要考虑角的范围,因此一定要用“模非负,角相同,余弦前,加号连”来判断是否为三角形式,再进行求解.【例1】(2022秋·辽宁·高二开学考试)z=1−3i(i是虚数单位),则z的辐角主值argzA.53π B.116π C.【解题思路】复数可以写成z=rcosθ+i【解答过程】z=1−3i=212−故选:A.【变式1-1】(2023·高一课时练习)2的辐角主值为(
).A.π2 B.3π2 C.0【解题思路】根据复数的三角形式,对选项逐一分析判断即可.【解答过程】对于A,若辐角主值为π2,则z=rcosπ对于B,若辐角主值为3π2,则z=rcos对于C,若辐角主值为0,则z=rcos0+isin0对于D,由于辐角主值的范围为0,2π,不可能为2故选:C.【变式1-2】(2022·高一课时练习)复数cosπ4−A.π4 B.3π4 C.5π4【解题思路】将复数的代数形式为三角形式,即可求出辐角的主值.【解答过程】复数cos=cos所以复数cosπ4−故选:D.【变式1-3】(2022·高一课时练习)设π<θ<5π4,则复数cos2θ+A.2π−3θ B.3θ−2π C.3θ D.3θ−π【解题思路】根据复数三角形式下的乘除运算及辐角的定义即可求解.【解答过程】解:cos2θ+因为π<θ<5π所以3π<3θ<15π4,所以所以该复数的辐角主值为3θ−2π.故选:B.【题型2复数的代数形式与三角形式的互化】【方法点拨】复数的代数形式转化为三角形式的步骤:①求出模;②确定辐角的主值;③写出三角形式.将复数的三角形式化为代数形式,只需要将其中蕴含的三角函数值求出数值即可.【例2】(2022·高一课时练习)将下列复数表示成三角形式(1)tanθ+(2)1+cos【解题思路】(1)根据同角三角函数的商数关系及诱导公式,再结合复数表示的三角形式即可求解;(2)根据三角函数的二倍角公式及诱导公式,再结合复数表示的三角形式即可求解;【解答过程】(1)tanθ+∵θ∈(0,πtanθ+(2)1+=2cos∵当0≤α<π时,0≤α2∴1+cos当π≤α<2π时,π2∴1+=−2cos【变式2-1】(2022·高一课时练习)化下列复数为三角形式.(1)-1+3i;(2)1-i;(3)2i;(4)-1.【解题思路】对于(1)、(2)、(3)、(4)四个小题,分别求出模和辐角主值,即可写出对应的三角形式.【解答过程】(1)因为z=-1+3i,所以a=-1,b=3,则r=(−1)2+(3)而对应点M(-1,3)在第二象限,θ的主值为23∴-1+3i=2(cos(2)因为z=1-i,所以a=1,b=-1,则r=12+(−1)而对应点M(1,-1)在第四象限,θ的主值为74∴-1+3i=2((3)因为z=2i,所以a=0,b=2,则r=2.对应点M(0,2)在y轴正半轴上,θ的主值为12∴2i=2(cos(4)因为z=-1,所以a=-1,b=0,则r=1,对应点M(-1,0)在x轴正半轴上,θ的主值为π.∴-1=cosπ+【变式2-2】(2022·高一课时练习)将下列复数化为三角形式:(1)sin5π(2)cosα−【解题思路】(1)利用诱导公式直接可得;(2)根据诱导公式直接转化即可.【解答过程】(1)sin5π(2)cosα−【变式2-3】(2022·全国·高一专题练习)将下列复数化为三角形式:(1)−3(2)−1−3(3)−2cos(4)2sin【解题思路】求出各复数的模和辐角,化简成r(cos【解答过程】(1)−3(2)−1−3(3)−2cos(4)2sin【题型3三角形式下的复数的乘、除运算】【方法点拨】复数三角形式下的乘法法则:模数相乘,辐角相加;复数三角形式下的乘方法则:模数乘方,辐角n倍;复数三角形式下的除法法则:模数相除,辐角相减.【例3】(2022春·江苏无锡·高二江苏省天一中学校考期中)棣莫弗公式(cosx+isinx)A.第一象限 B.第二象限 C.第三象限 D.第四象限【解题思路】根据棣莫弗公式及诱导公式计算即可.【解答过程】由棣莫弗公式知,cos=cos(π+∴复数cosπ6+故选:C.【变式3-1】(2023·高一课时练习)计算2cos75°+iA.−62+C.22−6【解题思路】根据复数的三角运算公式运算即可.【解答过程】因为1所以2cos所以2cos故选:B.【变式3-2】(2022·高一课时练习)已知复数z1=2cosπ12+isinπ12,z2=3cosA.6cosπ4C.3-3i D.3+3i【解题思路】利用复数三角形式的乘法法则,计算即可得解.【解答过程】z===3故选:D.【变式3-3】(2022·全国·高三专题练习)在复平面内,复数z=a+bi(a,b∈R)对应向量为OZ(O为坐标原点),设|OZ|=r,以射线Ox为始边,OZ为终边逆时针旋转所得的角为θ,则z=r(cosθ+isinθ),法国数学家棣莫弗发现棣莫弗定理:z1=rA.1024−10243i B.−1024+10243i C.【解题思路】先将z=−1+3【解答过程】由题意,得当z=−1+3i时,r=2,∴(−1+=2∵cos20π∴210故选:D.【题型4复数乘、除运算的几何意义的应用】【方法点拨】根据复数乘、除运算的几何意义,进行求解即可.【例4】把复数1+i对应的向量按顺时针方向旋转2π3A.1−32+C.−1+32+【解题思路】由题意用复数1+i乘以cos【解答过程】复数1+i对应的向量按顺时针方向旋转2(1+=(1+=−=−1+故选:B.【变式4-1】设复数z1=−1−i在复平面上对应向量OZ1,将OZ1按顺时针方向旋转56π后得到向量OZ2A.2−3 B.−2+3 C.2+3【解题思路】将给定的复数化成三角形式,再利用复数乘法的三角形式求出z2【解答过程】复数z1=2[cos(5π依题意,z2因此复数z2的辐角主值θ=5π12故选:C.【变式4-2】(2022·高一课时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 素描室内写生课程设计
- 相机挂件课程设计
- 英语语言学课程设计
- 航空专业票务课程设计
- (中职中专)贸法律与案例教学设计全书电子教案整本书教案1-6章全
- 电信课程设计论文
- 糖化锅课程设计选型
- 给水厂课程设计总结心得
- 游戏观察课程设计
- 联考素描课程设计考什么
- 餐饮店购销合同
- 文化资源数字化技术有哪些
- 2023年杭州联合银行校园招聘笔试历年高频考点试题答案详解
- 灌装轧盖机和供瓶机设备验证方案
- 《国家中药饮片炮制规范》全文
- 《钴鉧潭西小丘记》教学设计(部级优课)语文教案
- 人教版五年级下册数学讲义
- 安全工器具-变压器绝缘油课件
- 瓦楞纸箱工艺流程演示文稿
- 神通数据库管理系统v7.0企业版-3概要设计说明书
- 安置房项目二次结构砖砌体工程专项施工方案培训资料
评论
0/150
提交评论