浙江省普通高校2025届高二数学第一学期期末复习检测试题含解析_第1页
浙江省普通高校2025届高二数学第一学期期末复习检测试题含解析_第2页
浙江省普通高校2025届高二数学第一学期期末复习检测试题含解析_第3页
浙江省普通高校2025届高二数学第一学期期末复习检测试题含解析_第4页
浙江省普通高校2025届高二数学第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省普通高校2025届高二数学第一学期期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.双曲线的焦点到渐近线的距离为()A. B.2C. D.2.若倾斜角为的直线过,两点,则实数()A. B.C. D.3.已知函数的定义域为,其导函数为,若,则下列式子一定成立的是()A. B.C. D.4.方程有两个不同的解,则实数k的取值范围为()A. B.C. D.5.从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线经过椭圆的另一个焦点;从双曲线的一个焦点发出的光线,经过双曲线反射后,反射光线的反向延长线经过双曲线的另一个焦点.如图①,一个光学装置由有公共焦点的椭圆与双曲线构成,现一光线从左焦点发出,依次经与反射,又回到了点,历时秒;若将装置中的去掉,如图②,此光线从点发出,经两次反射后又回到了点,历时秒;若,则的长轴长与的实轴长之比为()A. B.C. D.6.已知函数,则()A.函数的极大值为,无极小值 B.函数的极小值为,无极大值C.函数的极大值为0,无极小值 D.函数的极小值为0,无极大值7.数列满足,且,是函数的极值点,则的值是()A.2 B.3C.4 D.58.《九章算术》与《几何原本》并称现代数学的两大源泉.在《九章算术》卷五商功篇中介绍了羡除(此处是指三面为等腰梯形,其他两侧面为直角三角形的五面体)体积的求法.在如图所示的羡除中,平面是铅垂面,下宽,上宽,深,平面BDEC是水平面,末端宽,无深,长(直线到的距离),则该羡除的体积为()A. B.C. D.9.已知椭圆的上下顶点分别为,一束光线从椭圆左焦点射出,经过反射后与椭圆交于点,则直线的斜率为()A. B.C. D.10.变量,之间的一组相关数据如表所示:若,之间的线性回归方程为,则的值为()45678.27.86.65.4A. B.C. D.11.直线的倾斜角为()A. B.C. D.12.已知点,点关于原点的对称点为,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若两定点A,B的距离为3,动点M满足,则M点的轨迹围成区域的面积为_________14.直线与直线垂直,则______15.某学生到某工厂进行劳动实践,利用打印技术制作模型.如图,该模型为一个大圆柱中挖去一个小圆柱后的剩余部分(两个圆柱底面圆的圆心重合),大圆柱的轴截面是边长为的正方形,小圆柱的侧面积是大圆柱侧面积的一半,打印所用原料的密度为,不考虑打印损耗,制作该模型所需原料的质量为________g.(取)16.若直线与圆有公共点,则b的取值范围是_____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的左,右顶点分别是,,且,是椭圆上异于,的不同的两点(1)若,证明:直线必过坐标原点;(2)设点是以为直径的圆和以为直径的圆的另一个交点,记线段的中点为,若,求动点的轨迹方程18.(12分)已知抛物线过点.(1)求抛物线方程;(2)若直线与抛物线交于两点两点在轴的两侧,且,求证:过定点.19.(12分)已知椭圆E的中心在坐标原点,焦点在坐标轴上,且经过,,三点,求椭圆E的标准方程20.(12分)已知,,分别为三个内角,,的对边,.(Ⅰ)求;(Ⅱ)若=2,的面积为,求,.21.(12分)已知点,.(1)求以为直径的圆的方程;(2)若直线被圆截得的弦长为,求值22.(10分)已知函数(1)求函数的单调区间;(2)求函数在区间上的值域

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据点到直线距离公式进行求解即可.【详解】由双曲线的标准方程可知:,该双曲线的焦点坐标为:,双曲线的渐近线方程为:,所以焦点到渐近线的距离为:,故选:A2、C【解析】根据直线的倾斜角和斜率的关系得到直线的斜率为,再根据两点的斜率公式计算可得;【详解】解:因为直线的倾斜角为,所以直线的斜率为,所以,解得;故选:C3、B【解析】令,求出函数的导数,得到函数的单调性,即可得到,从而求出答案【详解】解:令,则,又不等式恒成立,所以,即,所以在单调递增,故,即,所以,故选:B4、C【解析】转化为圆心在原点半径为1的上半圆和表示恒过定点的直线始终有两个公共点,结合图形可得答案.【详解】令,平方得表示圆心在原点半径为1的上半圆,表示恒过定点的直线,方程有两个不同的解即半圆和直线要始终有两个公共点,如图圆心到直线的距离为,解得,当直线经过时由得,当直线经过时由得,所以实数k的取值范围为.故选:C.5、D【解析】在图①和图②中,利用椭圆和双曲线的定义,分别求得和的周长,再根据光速相同,且求解.【详解】在图①中,由椭圆的定义得:,由双曲线的定义得,两式相减得,所以的周长为,在图②中,的周长为,因为光速相同,且,所以,即,所以,即的长轴长与的实轴长之比为,故选:D6、A【解析】利用导数来求得的极值.【详解】的定义域为,,在递增;在递减,所以的极大值为,没有极小值.故选:A7、C【解析】利用导数即可求出函数的极值点,再利用等差数列的性质及其对数的运算性质求解即可【详解】由,得,因为,是函数的极值点,所以,是方程两个实根,所以,因为数列满足,所以,所以数列为等差数列,所以,所以,故选:C8、C【解析】在,上分别取点,,使得,连接,,,把几何体分割成一个三棱柱和一个四棱锥,然后由棱柱、棱锥体积公式计算【详解】如图,在,上分别取点,,使得,连接,,,则三棱柱是斜三棱柱,该羡除的体积三棱柱四棱锥.故选:C【点睛】思路点睛:本题考查求空间几何体的体积,解题思路是观察几何体的结构特征,合理分割,将不规则几何体体积的计算转化为锥体、柱体体积的计算.考查了空间想象能力、逻辑思维能力、运算求解能力9、B【解析】根据给定条件借助椭圆的光学性质求出直线AD的方程,进而求出点D的坐标计算作答.【详解】依题意,椭圆的上顶点,下顶点,左焦点,右焦点,由椭圆的光学性质知,反射光线AD必过右焦点,于是得直线AD的方程为:,由得点,则有,所以直线的斜率为.故选:B10、C【解析】本题先求样本点中心,再利用线性回归方程过样本点中心直接求解即可.【详解】解:,,所以样本点中心:,线性回归方程过样本点中心,则解得:,故选:C【点睛】本题考查线性回归方程过样本点中心,是简单题.11、D【解析】由直线斜率概念可写出倾斜角的正切值,进而可求出倾斜角.【详解】因为直线的斜率为,所以倾斜角.故选D【点睛】本题主要考查直线的倾斜角,由斜率的概念,即可求出结果.12、C【解析】根据空间两点间距离公式,结合对称性进行求解即可.【详解】因为点关于原点的对称点为,所以,因此,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】建立如图直角坐标系,设点,根据题意和两点坐标求距离公式可得,结合圆的面积公式计算即可.【详解】以点A为坐标原点,射线AB为x轴的非负半轴建立直角坐标系,如图,设点,则,由,化简并整理得:,于是得点M轨迹是以点为圆心,2为半径的圆,其面积为,所以M点的轨迹围成区域的面积为.故答案为:14、##【解析】根据两直线垂直得,即可求出答案.【详解】由直线与直线垂直得,.故答案为:.15、4500【解析】根据题意可知大圆柱的底面圆的半径,两圆柱的高,设小圆柱的底面圆的半径为,再根据小圆柱的侧面积是大圆柱侧面积的一半,求出小圆柱的底面圆的半径,然后求出该模型的体积,从而可得出答案.【详解】解:根据题意可知大圆柱的底面圆的半径,两圆柱的高,设小圆柱的底面圆的半径为,则有,即,解得,所以该模型的体积为,所以制作该模型所需原料的质量为.故答案:4500.16、【解析】直线与圆有交点,则圆心到直线的距离小于或等于半径.【详解】直线即,圆的圆心为,半径为,若直线与圆有交点,则,解得,故实数取值范围是.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)设,首先证明,从而可得到,即得到;进而可得到四边形为平行四边形;再根据为的中点,即可证明直线必过坐标原点(2)设出直线的方程,与椭圆方程联立,消元,写韦达;根据条件可求出直线MN过定点,从而可得到过定点,进而可得到点在以为直径的圆上运动,从而可求出动点的轨迹方程【小问1详解】设,则,即因为,,所以因为,所以,所以.同理可证.因为,,所以四边形为平行四边形,因为为的中点,所以直线必过坐标原点【小问2详解】当直线的斜率存在时,设直线的方程为,,联立,整理得,则,,.因为,所以,因为,解得或.当时,直线的方程为过点A,不满足题意,所以舍去;所以直线的方程为,所以直线过定点.当直线的斜率不存在时,因为,所以直线的方程为,经验证,符合题意.故直线过定点.因为为的中点,为的中点,所以过定点.因为垂直平分公共弦,所以点在以为直径的圆上运动,该圆的半径,圆心坐标为,故动点的轨迹方程为.18、(1);(2)证明见解析.【解析】(1)运用代入法直接求解即可;(2)设出直线的方程与抛物线方程联立,结合一元二次方程根与系数关系、平面向量数量积的坐标表示公式进行求解即可.【小问1详解】由已知可得:;【小问2详解】的斜率不为设,,∴OA→⋅因为直线与抛物线交于两点两点在轴的两侧,所以,即过定点.【点睛】关键点睛:运用一元二次方程根与系数关系是解题的关键.19、【解析】分椭圆的焦点在轴上与焦点在轴上,两种情况讨论,利用待定系数法求出椭圆方程;【详解】解:(1)当椭圆的焦点在轴上时,设其方程为(),则又点C在椭圆上,得,解得,所以椭圆E的方程为(2)当椭圆的焦点在轴上时,设其方程为(),则又点C在椭圆上,得,解得,这与矛盾综上可知,椭圆的方程为20、(1)(2)=2【解析】(Ⅰ)由及正弦定理得由于,所以,又,故.(Ⅱ)的面积==,故=4,而故=8,解得=221、(1).(2)或【解析】(1)根据题意,有A、B的坐标可得线段AB的中点即C的坐标,求出AB的长即可得圆C的半径,由圆的标准方程即可得答案;(2)根据题意,由直线与圆的位置关系可得点C到直线x﹣my+1=0的距离d,结合点到直线的距离公式可得,解可得m的值,即可得答案【详解】(1)根据题意,点,,则线段的中点为,即的坐标为;圆是以线段为直径的圆,则其半径,圆的方程为.(2)根据题意,若直线被圆截得的弦长为,则点到直线的距离,又由,则有,变形可得:,解可得或【点睛】本题考查直线与圆的位置关系以及弦长的计算,涉及圆的标准方程,属于基础题22、(1)单调递增区间为,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论