版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省东营市垦利区第一中学2025届数学高二上期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆和圆恰有三条公共切线,则的最小值为()A.6 B.36C.10 D.2.在中,,,且BC边上的高为,则满足条件的的个数为()A.3 B.2C.1 D.03.已知椭圆方程为,则该椭圆的焦距为()A.1 B.2C. D.4.若命题“或”与命题“非”都是真命题,则A.命题与命题都是真命题B.命题与命题都是假命题C.命题是真命题,命题是假命题D.命题是假命题,命题是真命题5.已知关于x的不等式的解集为空集,则的最小值为()A. B.2C. D.46.下列函数是偶函数且在上是减函数的是A. B.C. D.7.在空间直角坐标系中,点关于轴对称的点的坐标为()A. B.C. D.8.已知,则下列不等式一定成立的是()A B.C. D.9.已知圆C过点,圆心在x轴上,则圆C的方程为()A. B.C. D.10.设函数是奇函数的导函数,,当时,,则使得成立的的取值范围是A. B.C D.11.已知集合,则()A. B.C. D.12.已知等差数列的公差,是与的等比中项,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的左、右焦点分别为,右顶点为,为双曲线上一点,且,线段的垂直平分线恰好经过点,则双曲线的离心率为_______14.曲线的一条切线的斜率为,该切线的方程为________.15.某地区有3个疫苗接种定点医院,现有10名志愿者将被派往这3个医院协助新冠疫苗接种工作,每个医院至少需要2名至多需要4名志愿者,则不同的安排方法共有___________种.16.已知向量,,若,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面ABCD为直角梯形,,平面ABCD,,.(1)求点B到平面PCD的距离;(2)求二面角的平面角的余弦值.18.(12分)已知:,椭圆,双曲线.(1)若的离心率为,求的离心率;(2)当时,过点的直线与的另一个交点为,与的另一个交点为,若恰好是的中点,求直线的方程.19.(12分)已知函数在处有极值.(1)求的值;(2)求函数在上的最大值与最小值.20.(12分)已知等差数列满足,.(1)求的通项公式;(2)设,求数列的前项和.21.(12分)如图,扇形AOB的半径为2,圆心角,点C为弧AB上一点,平面AOB且,点且,面MOC(1)求证:平面平面POB;(2)求平面POA与平面MOC所成二面角的正弦值的大小22.(10分)如图,在长方体中,,,,M为上一点,且(1)求点到平面的距离;(2)求二面角的余弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由公切线条数得两圆外切,由此可得的关系,从而点在以原点为圆心,4为半径的圆上,记,由求得的最小值,平方后即得结论【详解】圆标准方程为,,半径为,圆标准方程为,,半径为,两圆有三条公切线,则两圆外切,所以,即,点在以原点为圆心,4为半径的圆上,记,,所以,所以的最小值为故选:B2、B【解析】利用等面积法求得,再利用正弦定理求得,利用内角和的关系及两角和差化积公式,二倍角公式转化为,再利用正弦函数的性质求满足条的的个数,即可求解.【详解】由三角形的面积公式知,即由正弦定理知所以,即,即,即利用两角和的正弦公式结合二倍角公式化简得又,则,,且由正弦函数的性质可知,满足的有2个,即满足条件的的个数为2.故选:B3、B【解析】根据椭圆中之间的关系,结合椭圆焦距的定义进行求解即可.【详解】由椭圆的标准方程可知:,则焦距为,故选:B.4、D【解析】因为非p为真命题,所以p为假命题,又p或q为真命题,所以q为真命题,选D.5、D【解析】根据一元二次不等式的解集的情况得出二次项系数大于零,根的判别式小于零,可得出,再将化为,由和均值不等式可求得最小值.【详解】由题意可得:,,可以得到,而,可以令,则有,当且仅当取等号,所以的最小值为4.故答案为:4.【点睛】本题主要考查均值不等式,关键在于由一元二次不等式的解集的情况得出的关系,再将所求的式子运用不等式的性质降低元的个数,运用均值不等式,是中档题.6、C【解析】根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案【详解】根据题意,依次分析选项:对于A,为一次函数,不是偶函数,不符合题意;对于B,,,为奇函数,不是偶函数,不符合题意;对于C,,为二次函数,是偶函数且在上是减函数,符合题意;对于D,,,为奇函数,不是偶函数,不符合题意;故选C【点睛】本题考查函数的奇偶性与单调性的判定,关键是掌握常见函数的奇偶性与单调性,属于基础题7、B【解析】结合已知条件,利用对称的概念即可求解.【详解】不妨设点关于轴对称的点的坐标为,则线段垂直于轴且的中点在轴,从而点关于轴对称的点的坐标为.故选:B.8、B【解析】运用不等式的性质及举反例的方法可求解.【详解】对于A,如,满足条件,但不成立,故A不正确;对于B,因为,所以,所以,故B正确;对于C,因为,所以,所以不成立,故C不正确;对于D,因为,所以,所以,故D不正确.故选:B9、C【解析】设出圆的标准方程,将已知点的坐标代入,解方程组即可.【详解】设圆的标准方程为,将坐标代入得:,解得,故圆的方程为,故选:C.10、B【解析】构造函数,可知函数为奇函数,利用导数分析出函数在上的单调性,并得出,然后分别在和解不等式,由此可得出不等式的解集.【详解】构造函数,该函数的定义域为,由于函数为上的奇函数,则,所以,函数为上的奇函数,且,,.当时,,此时,函数单调递增,由,可得,解得;当时,则函数单调递增,由,可得,解得.综上所述,使得成立的的取值范围是.故选:B.【点睛】本题考查利用函数的单调性求解函数不等式,根据导数不等式的结构构造合适的函数是解题的关键,考查分析问题和解决问题的能力,属于中等题.11、B【解析】先求得集合A,再根据集合的交集运算可得选项.【详解】解:因为,所以故选:B.12、C【解析】由等比中项的性质及等差数列通项公式可得即可求.【详解】由,则,可得.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】在中求出,再在中求出,即可得到的齐次式,化简即可求出离心率【详解】设双曲线:,,不妨设为双曲线右支上一点因为线段的垂直平分线恰好经过点,且,所以,在中,,所以,,在中,,所以,,因此,,化简得,,即,而,解得故答案为:14、【解析】使用导数运算公式求得切点处的导数值,并根据导数的几何意义等于切线斜率求得切点的横坐标,进而得到切点坐标,然后利用点斜式求出切线方程即可.【详解】的导数为,设切点为,可得,解得,即有切点,则切线的方程为,即.故答案为:.【点睛】本题考查导数的加法运算,导数的几何意义,和求切线方程,难度不大,关键是正确的使用导数运算公式求得切点处的导数值,15、22050【解析】先分组,再排列,注意部分平均分组问题,需要除以平均组数的全排列.【详解】根据题意,这10名志愿者的安排方法共有两类:第一类是2,4,4,第二类是3,3,4.故不同的安排方法共有种.故答案为:2205016、【解析】根据向量平行求得,由此求得.【详解】由于,所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)建立空间直角坐标系,用点到面的距离公式即可算出答案;(2)先求出两个面的法向量,然后用二面角公式即可.【小问1详解】∵平面平面∴PB⊥AB,PB⊥BC,又两两互相垂直,所以,以点为坐标原点,分别为轴,轴,轴建立如图所示的空间直角坐标系,D(3,6,0),A(0,6,0)设平面的一个法向量所以n⋅PD令,可得记点到平面的距离为,则d=【小问2详解】由(1)可知平面的一个法向量为平面的一个法向量为设二面角的平面角为由图可知,18、(1)(2)或【解析】(1)有椭圆的离心率可以得到,的关系,在双曲线中方程是非标准的方程,注意套公式时容易出错.(2)联立方程分别解得P,Q两点的横坐标,利用中点坐标公式即可解得斜率值.【小问1详解】椭圆的离心率为,,在双曲线中因为,.【小问2详解】当时,椭圆,双曲线.当过点的直线斜率不存在时,点P,Q恰好重合,坐标为,所以不符合条件;当斜率存在时,设直线方程为,,联立方程得,利用韦达定理,所以;同理联立方程,韦达定理得,所以由于是的中点,所以,所以,即,化简得,所以直线方程为或.19、(1),;(2)最大值为,最小值为【解析】(1)对函数求导,根据函数在处取极值得出,再由极值为,得出,构造一个关于的二元一次方程组,便可解出的值;(2)由(1)可知,求出,利用导数研究函数在上的单调性,比较极值和端点值的大小,即可得出在上的最大值与最小值.【详解】解:(1)由题可知,,的定义域为,,由于在处有极值,则,即,解得:,,(2)由(1)可知,其定义域是,,令,而,解得,由,得;由,得,则在区间上,,,的变化情况表如下:120单调递减单调递增可得,,,由于,则,所以,函数在区间上的最大值为,最小值为.【点睛】本题考查已知极值求参数值和函数在闭区间内的最值问题,考查利用导函数研究函数在给定闭区间内的单调性,以及通过比较极值和端点值确定函数在闭区间内的最值,考查运算能力.20、(1);(2).【解析】(1)设等差数列的公差为,根据题意可得出关于、的方程组,解出这两个量的值,可得出数列的通项公式;(2)求得,利用裂项法可求得.【小问1详解】解:设等差数列的公差为,则,可得,由可得,即,解得,,故.【小问2详解】解:,因此,.21、(1)证明见解析(2)【解析】(1)连接,设与相交于点,连接MN,利用余弦定理可求得,,的长度,进而得到,又,由此可得平面,最后利用面面垂直的判定定理即可得证;(2)建立恰当空间直角坐标系,求出两个平面的法向量,然后利用向量法求解二面角的余弦值,从而即可得答案【小问1详解】证明:连接,设与相交于点,连接MN,平面,在平面内,平面平面,,,,在中,由余弦定理可得,,,又在中,,由余弦定理可得,,,故,又平面,在平面内,,又,平面,又平面,平面平面;【小问2详解】解:由(1)可知直线,,两两互相垂直,所以以点为坐标原点,建立如图所示的空间直角坐标系,则,所以,,设平面的一个法向量为,则,可取;设平面的一个法向量为,则,可取,,平面与平面所成二面角的正弦值为22、(1)(2)【解析】(1)以A为原点,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 传感器改进课课程设计
- 桥面板设计课程设计
- 杀寄生虫制剂相关项目建议书
- 椅垫相关项目实施方案
- 白鹭湿地研学课程设计
- 北京联合大学《建筑环境测试技术》2021-2022学年第一学期期末试卷
- 民歌教学课程设计案例
- 树莓派软件课程设计
- 婴儿全套衣服装项目评价分析报告
- 测振仪市场环境与对策分析
- (完整版)数字电子技术基础教案
- 管理过程中的知识共享机制
- 精神分裂症患者护理查房
- 2024年4月浙江省00015英语二试题及答案含评分参考
- 言语理解与表达题库带答案
- 加班规章制度
- 中国民歌的影响与作用1000字
- 门窗施工安全事故应急预案
- 自动化腹膜透析专家共识2021
- (新版)小学音乐新课标考试题库800题(含答案)
- (文档完整版)作文格子纸模板
评论
0/150
提交评论