版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省邵东县三中2025届高二上数学期末调研模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过点且平行于直线的直线方程为()A. B.C. D.2.我国古代数学著作《算法统宗》中有这样一段记载:“一百八十九里关,初行健步不为难,次日脚痛减一半,六朝才得到其关.”其大意为:“有一个人共行走了189里的路程,第一天健步行走,从第二天起,因脚痛每天走的路程为前一天的一半,走了6天才到达目的地.”则该人第一天行走的路程为()A.108里 B.96里C.64里 D.48里3.某公司有320名员工,将这些员工编号为1,2,3,…,320,从这些员工中使用系统抽样的方法抽取20人进行“学习强国”的问卷调查,若54号被抽到,则下面被抽到的是()A.72号 B.150号C.256号 D.300号4.某中学高一年级有200名学生,高二年级有260名学生,高三年级有340名学生,为了了解该校高中学生完成作业情况,现用分层抽样的方法抽取一个容量为40的样本,则高二年级抽取的人数为()A.10 B.13C.17 D.265.已知抛物线,为坐标原点,以为圆心的圆交抛物线于、两点,交准线于、两点,若,,则抛物线方程为()A. B.C. D.6.《周髀算经》中有这样一个问题:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气,自冬至日起,其日影长依次成等差数列,立春当日日影长为9.5尺,立夏当日日影长为2.5尺,则冬至当日日影长为()A.12.5尺 B.13尺C.13.5尺 D.14尺7.已知函数,若对任意两个不等的正数,,都有恒成立,则a的取值范围为()A. B.C. D.8.命题“,使”的否定是()A.,有 B.,有C.,使 D.,使9.南宋数学家杨辉在《详解九章算术法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般的等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次成等差数列.如数列1,3,6,10,前后两项之差组成新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.现有二阶等差数列,其前7项分别为2,3,5,8,12,17,23,则该数列的第31项为()A.336 B.467C.483 D.60110.曲线在处的切线如图所示,则()A. B.C. D.11.直线:和圆的位置关系是()A.相离 B.相切或相交C.相交 D.相切12.已知椭圆的长轴长为10,焦距为8,则该椭圆的短轴长等于()A.3 B.6C.8 D.12二、填空题:本题共4小题,每小题5分,共20分。13.欧阳修在《卖油翁》中写道:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为4cm的圆,中间有边长为1cm的正方形孔,若你随机地向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率是_______14.如图,已知正方形边长为,长方形中,,平面与平面互相垂直,是线段的中点,则异面直线与所成角的余弦值为______15.某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为的长方形纸,对折1次共可以得到,两种规格的图形,它们的面积之和,对折2次共可以得到,,三种规格的图形,它们的面积之和,以此类推,则对折4次共可以得到不同规格图形的种数为______;如果对折次,那么______.16.已知函数,则函数在上的最大值为_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆过点,,且圆心在直线:上.(1)求圆的方程;(2)若从点发出的光线经过轴反射,反射光线刚好经过圆心,求反射光线的方程.18.(12分)已知的展开式中二项式系数和为16(1)求展开式中二项式系数最大的项;(2)设展开式中的常数项为p,展开式中所有项系数的和为q,求19.(12分)设Sn是等差数列{an}的前n项和,已知,S2=-3.(1)求{an}的通项公式;(2)若,求数列{bn}的前n项和Tn.20.(12分)已知函数在处取得极值确定a的值;若,讨论的单调性21.(12分)已知函数.(1)当时,求曲线在点处的切线方程;(2)试讨论函数的单调性.22.(10分)△的内角A,B,C的对边分别为a,b,c.已知(1)求角B的大小;(2)若△不为钝角三角形,且,,求△的面积
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】设直线的方程为,代入点的坐标即得解.【详解】解:设直线的方程为,把点坐标代入直线方程得.所以所求的直线方程为.故选:A2、B【解析】根据题意,记该人每天走的路程里数为,分析可得每天走的路程里数构成以的为公比的等比数列,由求得首项即可【详解】解:根据题意,记该人每天走的路程里数为,则数列是以的为公比的等比数列,又由这个人走了6天后到达目的地,即,则有,解可得:,故选:B.【点睛】本题考查数列的应用,涉及等比数列的通项公式以及前项和公式的运用,注意等比数列的性质的合理运用.3、B【解析】根据系统抽样分成20个小组,每组16人中抽一人,故抽到的序号相差16的整数倍,即可求解.【详解】∵用系统抽样的方法从320名员工中抽取一个容量为20的样本∴,即每隔16人抽取一人∵54号被抽到∴下面被抽到的是54+16×6=150号,而其他选项中的数字不满足与54相差16的整数倍,故答案为:B故选:B4、B【解析】计算出抽样比可得答案.【详解】该校高中学生共有名,所以高二年级抽取的人数名.故选:B.5、C【解析】设圆的半径为,根据已知条件可得出关于的方程,求出正数的值,即可得出抛物线的方程.【详解】设圆的半径为,抛物线的准线方程为,由勾股定理可得,因为,将代入抛物线方程得,可得,不妨设点,则,所以,,解得,因此,抛物线的方程为.故选:C.6、B【解析】设十二节气自冬至日起的日影长构成的等差数列为,利用等差数列的性质即可求解.【详解】设十二节气自冬至日起的日影长构成的等差数列为,则立春当日日影长为,立夏当日日影长为,故所以冬至当日日影长为.故选:B7、A【解析】将已知条件转化为时恒成立,利用参数分离的方法求出a的取值范围【详解】对任意都有恒成立,则时,,当时恒成立,
,当时恒成立,,故选:A8、B【解析】根据特称命题的否定是全称命题即可得正确答案【详解】存在量词命题的否定,只需把存在量词改成全称量词,并把后面的结论否定,所以“,使”的否定为“,有”,故选:B.9、B【解析】先由递推关系利用累加法求出通项公式,直接带入即可求得.【详解】根据题意,数列2,3,5,8,12,17,23……满足,,所以该数列的第31项为.故选:B10、C【解析】由图可知切线斜率为,∴.故选:C.11、C【解析】直线l:y﹣1=k(x﹣1)恒过点(1,1),且点(1,1)在圆上,直线的斜率存在,故可知直线l:y﹣1=k(x﹣1)和圆C:x2+y2﹣2y=0的关系【详解】圆C:x2+y2﹣2y=0可化为x2+(y﹣1)2=1∴圆心为(0,1),半径为1∵直线l:y﹣1=k(x﹣1)恒过点(1,1),且点(1,1)在圆上且直线的斜率存在∴直线l:y﹣1=k(x﹣1)和圆C:x2+y2﹣2y=0的关系是相交,故选C【点睛】本题考查的重点是直线与圆的位置关系,解题的关键是确定直线恒过定点,此题易误选B,忽视直线的斜率存在12、B【解析】根据椭圆中的关系即可求解.【详解】椭圆的长轴长为10,焦距为8,所以,,可得,,所以,可得,所以该椭圆的短轴长,故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分别求出圆和正方形的面积,结合几何概型的面积型计算公式进行求解即可.【详解】因为铜钱的面积为,正方形孔的面积为,所以随机地向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率是.故答案为:【点睛】本题考查了几何概型计算公式,考查了数学运算能力,属于基础题.14、【解析】建立如图所示的空间直角坐标系,求出,后可求异面直线所成角的余弦值.【详解】长方形可得,因为平面与平面互相垂直,平面平面,平面,故平面,故可建立如图所示的空间直角坐标系,则,故,,故.故答案为:15、①.5②.【解析】(1)按对折列举即可;(2)根据规律可得,再根据错位相减法得结果.【详解】(1)由对折2次共可以得到,,三种规格的图形,所以对着三次的结果有:,共4种不同规格(单位;故对折4次可得到如下规格:,,,,,共5种不同规格;(2)由于每次对着后的图形的面积都减小为原来的一半,故各次对着后的图形,不论规格如何,其面积成公比为的等比数列,首项为120,第n次对折后的图形面积为,对于第n此对折后的图形的规格形状种数,根据(1)的过程和结论,猜想为种(证明从略),故得猜想,设,则,两式作差得:,因此,.故答案为:;.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于结构,其中是等差数列,是等比数列,用错位相减法求和;(3)对于结构,利用分组求和法;(4)对于结构,其中是等差数列,公差为,则,利用裂项相消法求和.解答题16、【解析】利用导数单调性求出的单调性,比较极小值与两端点,的大小求出在上的最大值.【详解】因为,则,令,即时,函数单调递增.令,即时,函数单调递减.所以的单调递减区间为,的单调递增区间为,所以在上单调递减,在上单调递增,所以函数的极小值也是函数的最小值.,两端点为,,即最大值为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)根据题意设圆心,利用两点坐标公式求距离公式表示出,解出,确定圆心坐标和半径,进而得出圆的标准方程;(2)根据点关于坐标轴对称的点的特征可得,利用直线的两点式方程即可得出结果.【小问1详解】圆过点,,因为圆心在直线::上,设圆心,又圆过点,,所以,即,解得,所以,所以故圆的方程为:;【小问2详解】点关于轴的对称点,则反射光线必经过点和点,由直线的两点式方程可得,即:.18、(1)(2)【解析】(1)由二项式系数和的性质得出,再由性质求出展开式中二项式系数最大的项;(2)由通项得出,利用赋值法得出,再求解【小问1详解】由题意可得,解得.,展开式中二项式系数最大的项为;【小问2详解】,其展开式的通项为,令,得∴常数项令,可得展开式中所有项系数的和为,∴19、(1);(2)【解析】(1)根据所给条件列出方程组,求得,即可求得答案;(2)根据(1)的结果,写出,利用等比数列的前n项和公式求得答案.【小问1详解】设等差数列{an}公差为d,由,得解得所以(n∈N*);【小问2详解】由(1)可知,故,所以20、(1)(2)在和内为减函数,在和内为增函数【解析】(1)对求导得,因为在处取得极值,所以,即,解得;(2)由(1)得,,故,令,解得或,当时,,故为减函数,当时,,故为增函数,当时,,故为减函数,当时,,故为增函数,综上所知:和是函数单调减区间,和是函数的单调增区间.21、(1)(2)详见解析.【解析】(1)由,求导,得到,写出切线方程;(2)求导,再分,,讨论求解.【小问1详解】解:因为,所以,则,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医用营养品市场环境与对策分析
- 折叠式电动自行车相关项目建议书
- 幼儿园小班安全《逛动物园》教案
- 数学合与分的顺口溜
- 2024年DH(DHP)离心压缩机项目规划申请报告模范
- 减速器斜齿轮课程设计
- 2024年教学仪器项目规划申请报告模范
- 2024年抗精神病药品项目规划申请报告模范
- 手推车家具项目评价分析报告
- 2024年各种嵌入式集成电路项目申请报告模范
- 车辆超载带来的危险
- 母婴阻断培训课件总结
- 人教版四年级英语上册U2 My Schoolbag单元整体作业设计
- 小学三年级体育上册教案-(全册)
- 内瘘堵塞的个案护理
- 可见的学习与思维教学
- 环保管家实施总结汇报
- 重庆冰淇淋市场分析报告
- 防止全厂停电事故的措施
- 孕产妇复苏及创伤课件
- 会展宣传推广方案案例
评论
0/150
提交评论