咸宁市重点中学2025届数学高一上期末学业质量监测模拟试题含解析_第1页
咸宁市重点中学2025届数学高一上期末学业质量监测模拟试题含解析_第2页
咸宁市重点中学2025届数学高一上期末学业质量监测模拟试题含解析_第3页
咸宁市重点中学2025届数学高一上期末学业质量监测模拟试题含解析_第4页
咸宁市重点中学2025届数学高一上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

咸宁市重点中学2025届数学高一上期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.计算(16A.-1 B.1C.-3 D.32.已知函数是幂函数,且在上是减函数,则实数m的值是()A或2 B.2C. D.13.电影《长津湖》中,炮兵雷公牺牲的一幕看哭全网,他的原型是济南英雄孔庆三.因为前沿观察所距敌方阵地较远,需要派出侦察兵利用观测仪器标定目标,再经过测量和计算指挥火炮实施射击.为了提高测量和计算的精度,军事上通常使用密位制来度量角度,将一个圆周分为6000等份,每一等份的弧所对的圆心角叫做1密位.已知我方迫击炮连在占领阵地后,测得敌人两地堡之间的距离是54米,两地堡到我方迫击炮阵地的距离均是1800米,则我炮兵战士在摧毁敌方一个地堡后,为了快速准确地摧毁敌方另一个地堡,需要立即将迫击炮转动的角度()注:(ⅰ)当扇形的圆心角小于200密位时,扇形的弦长和弧长近似相等;(ⅱ)取等于3进行计算A.30密位 B.60密位C.90密位 D.180密位4.已知向量,向量,则的最大值,最小值分别是()A.,0 B.4,C.16,0 D.4,05.命题:的否定为()A. B.C. D.6.下列四个函数中,在其定义域上既是奇函数又是单调递增函数的是A. B.C. D.7.我国东汉末数学家赵爽在《周髀算经》中利用一幅“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示.在“赵爽弦图”中,若,则()A. B.C. D.8.设,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线后人称之为三角形的欧拉线.已知的顶点,若其欧拉线方程为,则顶点C的坐标是A. B.C. D.10.以,为基底表示为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.点是一次函数图象上一动点,则的最小值是______12.函数f(x)=log2(x2-5),则f(3)=______13.已知函数,若关于方程恰好有6个不相等的实数解,则实数的取值范围为__________.14.若在内有两个不同的实数值满足等式,则实数k的取值范围是_______15.命题“”的否定是___________.16.将一个高为的圆锥沿其侧面一条母线展开,其侧面展开图是半圆,则该圆锥的底面半径为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.直线过点,且倾斜角为.(1)求直线的方程;(2)求直线与坐标轴所围成的三角形面积.18.已知α是第二象限角,且tanα=-(1)求sinα,cos(2)求sinα-5π+19.已知,且满足,求:的值20.已知全集,,.(1)当时,,;(2)若,求实数a的取值范围,21.如图,已知平面,四边形为矩形,四边形为直角梯形,,,,.(1)求证:平面;(2)求三棱锥的体积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】原式=故选B2、C【解析】由函数是幂函数可得,解得或2,再讨论单调性即可得出.【详解】是幂函数,,解得或2,当时,在上是减函数,符合题意,当时,在上是增函数,不符合题意,.故选:C.3、A【解析】求出1密位对应的弧度,进而求出转过的密位.【详解】有题意得:1密位=,因为圆心角小于200密位,扇形的弦长和弧长近似相等,所以,因为,所以迫击炮转动的角度为30密位.故选:A4、D【解析】利用向量的坐标运算得到|2用θ的三角函数表示化简求最值【详解】解:向量,向量,则2(2cosθ,2sinθ+1),所以|22=(2cosθ)2+(2sinθ+1)2=8﹣4cosθ+4sinθ=8﹣8sin(),所以|22的最大值,最小值分别是:16,0;所以|2的最大值,最小值分别是4,0;故选:D【点睛】本题考查了向量的坐标运算以及三角函数解析式的化简;利用了两角差的正弦公式以及正弦函数的有界性5、B【解析】根据全称命题的否定是特称命题判断可得.【详解】解:命题:为全称量词命题,其否定为;故选:B6、C【解析】易知为非奇非偶函数,故排除选项A,因为,,故排除选项B、D,而在定义域上既是奇函数又是单调递增函数.故选C.7、B【解析】由题,根据向量加减数乘运算得,进而得.【详解】解:因为在“赵爽弦图”中,若,所以,所以,所以,所以.故选:B8、D【解析】分别取特殊值验证充分性和必要性不满足,即可得到答案.【详解】充分性:取,满足“”,但是“”不成立,即充分性不满足;必要性:取,满足“”,但是“”不成立,即必要性不满足;所以“”是“”的既不充分也不必要条件.故选:D9、A【解析】设C的坐标,由重心坐标公式求重心,代入欧拉线得方程,求出AB的垂直平分线,联立欧拉线方程得三角形外心,外心到三角形两顶点距离相等可得另一方程,两方程联立求得C点的坐标.【详解】设C(m,n),由重心坐标公式得重心为,代入欧拉线方程得:①AB的中点为,,所以AB的中垂线方程为联立,解得所以三角形ABC的外心为,则,化简得:②联立①②得:或,当时,BC重合,舍去,所以顶点C的坐标是故选A.【点睛】本题主要考查了直线方程的各种形式,重心坐标公式,属于中档题.10、B【解析】设,利用向量相等可构造方程组,解方程组求得结果.【详解】设则本题正确选项:【点睛】本题考查平面向量基本定理的应用,关键是能够通过向量相等构造出方程组,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】把点代入函数的解析式得到,然后利用基本不等式求最小值.【详解】由题意可知,又因为,所以,当且仅当即时等号成立所以的最小值是.故答案为:.12、2【解析】利用对数性质及运算法则直接求解【详解】∵函数f(x)=log2(x2-5),∴f(3)=log2(9-5)=log24=2故答案为2【点睛】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题13、【解析】作出函数的简图,换元,结合函数图象可知原方程有6根可化为在区间上有两个不等的实根,列出不等式组求解即可.【详解】当,结合“双勾”函数性质可画出函数的简图,如下图,令,则由已知条件知,方程在区间上有两个不等的实根,则,即实数的取值范围为.故答案为:【点睛】本题主要考查了分段函数的图象,二次方程根的分布,换元法,数形结合,属于难题.14、【解析】讨论函数在的单调性即可得解.【详解】函数,时,单调递增,时,单调递减,,,,所以在内有两个不同的实数值满足等式,则,所以.故答案为:15、,.【解析】根据特称命题的否定的性质进行求解即可.【详解】特称命题的否定,先把存在量词改为全称量词,再把结论进行否定即可,命题“,”的否定是“,”,故答案为:,.16、1【解析】设该圆锥的底面半径为r,推导出母线长为2r,再由圆锥的高为,能求出该圆锥的底面半径【详解】设该圆锥的底面半径为r,将一个高为的圆锥沿其侧面一条母线展开,其侧面展开图是半圆,,解得,圆锥的高为,,解得故答案为1【点睛】本题考查圆锥的底面半径的求法,考查圆锥性质、圆等基础知识,考查运算求解能力,是基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据倾斜角得到斜率,再由点斜式,即可得出结果;(2)分别求出直线与坐标轴的交点坐标,进而可求出三角形面积.【详解】(1)∵倾斜角为,∴斜率,∴直线的方程为:,即;(2)由(1)得,令,则,即与轴交点为;令,则,以及与轴交点为;所以直线与坐标轴所围成的三角形面积为.18、(1)sinα=(2)713【解析】(1)解方程组sin2(2)直接利用诱导公式化简求值.【小问1详解】解:因为tanα=-5又sin2α+所以sinα=【小问2详解】解:sin=-19、【解析】根据二倍角公式,结合题意,可求得的值,根据降幂公式,两角和的正弦公式,化简整理,根据齐次式的计算方法,即可得答案.【详解】因为,整理可得,解得或因为,所以则20、(1),或;(2)【解析】(1)解不等式,求出,进而求出与;(2)利用交集结果得到集合包含关系,进而求出实数a的取值范围.【小问1详解】,解得:,所以,当时,,所以,或;【小问2详解】因为,所以,要满足,所以实数a的取值范围是21、(1)证明见解析;(2).【解析】(1)先证明AC⊥BE,再取的中点,连接,经计算,利用勾股定理逆定理得到AC⊥BC,然后利用线面垂直的判定定理证得结论;(2)利用线面垂直的判定定理证得CM⊥平面BEF,即为所求三棱锥的高

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论