版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省滨州市惠民县中学2025届高二数学第一学期期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的值域为()A. B.C. D.2.已知数列的通项公式为.若数列的前n项和为,则取得最大值时n的值为()A.2 B.3C.4 D.53.已知函数,在上随机任取一个数,则的概率为()A. B.C. D.4.等比数列{}中,已知=8,+=4,则的值为()A.1 B.2C.3 D.55.已知等比数列的公比为q,且,则“”是“是递增数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.“且”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.若直线与直线垂直,则()A6 B.4C. D.8.过点作圆的切线,则切线的方程为()A. B.C.或 D.或9.已知,,,其中,,,则()A. B.C. D.10.我国古代数学名著《算法统宗》是明代数学家程大位(1533-1606年)所著.该书中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”.其意思是:“一座7层塔共挂了381盏灯,且下一层灯数是上一层的2倍,则可得塔的最顶层共有灯几盏?”.若改为“求塔的最底层几盏灯?”,则最底层有()盏.A.192 B.128C.3 D.111.在等差数列{}中,,,则的值为()A.18 B.20C.22 D.2412.已知点,,若直线过点且与线段相交,则直线的斜率的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设椭圆,点在椭圆上,求该椭圆在P处的切线方程______.14.如图,在棱长都为的平行六面体中,,,两两夹角均为,则________;请选择该平行六面体的三个顶点,使得经过这三个顶点的平面与直线垂直.这三个顶点可以是________15.已知数列的前的前n项和为,数列的的前n项和为,则满足的最小n的值为______16.圆心为直线与直线的交点,且过原点的圆的标准方程是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆M经过点F(2,0),且与直线x=-2相切.(1)求圆心M的轨迹C的方程;(2)过点(-1,0)的直线l与曲线C交于A,B两点,若,求直线l的斜率k的取值范围.18.(12分)已知抛物线C:,过点且斜率为k的直线与抛物线C相交于P,Q两点.(1)设点B在x轴上,分别记直线PB,QB的斜率为.若,求点B的坐标;(2)过抛物线C的焦点F作直线PQ的平行线与抛物线C相交于M,N两点,求的值.19.(12分)如图,是平行四边形,已知,,平面平面.(1)证明:;(2)若,求平面与平面所成二面角的平面角的余弦值20.(12分)已知圆C的圆心在直线上,且过点.(1)求圆C的方程;(2)若圆C与直线交于A,B两点,且,求m的值.21.(12分)如图,在四面体ABCD中,,平面ABC,点M为棱AB的中点,,(1)证明:;(2)求平面BCD和平面DCM夹角的余弦值22.(10分)已知正项数列的首项为,且满足,(1)求证:数列为等比数列;(2)记,求数列的前n项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据基本不等式即可求出【详解】因为,当且仅当时取等号,所以函数的值域为故选:C2、C【解析】根据单调性分析出数列的正数项有哪些即可求解.【详解】由条件有,当时,,即;当时,,即.即,所以取得最大值时n的值为.故选:C3、A【解析】先解不等式,然后由区间长度比可得.【详解】解不等式,得,所以,即的概率为.故选:A4、C【解析】由等比数列性质求出公比,将原式化简后计算【详解】设等比数列{}的公比为,则=,=,所以==.又+=+=(+)=8×=2,+=+=(+)=8×=1,所以+++=2+1=3.故选:C5、B【解析】利用充分条件和必要条件的定义结合等比数列的性质分析判断【详解】当时,则,则数列为递减数列,当是递增数列时,,因为,所以,则可得,所以“”是“是递增数列”的必要不充分条件,故选:B6、A【解析】按照充分必要条件的判断方法判断,“且”能否推出“”,以及“”能否推出“且”,判断得到正确答案,【详解】当且时,成立,反过来,当时,例:,不能推出且.所以“且”是“”的充分不必要条件.故选:A【点睛】本题考查充分不必要条件的判断,重点考查基本判断方法,属于基础题型.7、A【解析】由两条直线垂直的条件可得答案.【详解】由题意可知,即故选:A.8、C【解析】设切线的方程为,然后利用圆心到直线的距离等于半径建立方程求解即可.【详解】圆的圆心为原点,半径为1,当切线的斜率不存在时,即直线的方程为,不与圆相切,当切线的斜率存在时,设切线的方程为,即所以,解得或所以切线的方程为或故选:C9、C【解析】先令函数,求导判断函数的单调性,并作出函数的图像,由函数的单调性判断,再由对称性可得.【详解】由,则,同理,,令,则,当;当,∴在上单调递减,单调递增,所以,即可得,又,,由图的对称性可知,.故选:C10、A【解析】根据题意,转化为等比数列,利用通项公式和求和公式进行求解.【详解】设这个塔顶层有盏灯,则问题等价于一个首项为,公比为2的等比数列的前7项和为381,所以,解得,所以这个塔的最底层有盏灯.故选:A.11、B【解析】根据等差数列通项公式相关计算求出公差,进而求出首项.【详解】设公差为,由题意得:,解得:,所以.故选:B12、B【解析】直接利用两点间的坐标公式和直线的斜率的关系求出结果【详解】解:直线过点且斜率为,与连接两点,的线段有公共点,由图,可知,,当时,直线与线段有交点故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意可知切线的斜率存在,所以设切线方程为,代入椭圆方程中整理化简,令判别式等于零,可求出的值,从而可求得切线方程【详解】由题意可知切线的斜率存在,所以设切线方程为,将代入中得,,化简整理得,令,化简整理得,即,解得,所以切线方程为,即,故答案为:14、①.②.点或点(填出其中一组即可)【解析】(1)以向量,,为基底分别表达出向量和,展开即可解决;(2)由上一问可知,用上一问同样的方法可以证明出,这样就证明了平面与直线垂直.【详解】(1)令,,,则,则有,故(2)令,,,则,则有,故故,即又由(1)之,,故直线垂直于平面同理可证直线垂直于平面故答案为:0;点或点15、9【解析】由数列的前项和为,则当时,,所以,所以数列的前和为,当时,,当时,,所以满足的最小的值为.点睛:本题主要考查了等差数列与等比数列的综合应用问题,其中解答中涉及到数列的通项与的关系,推导数列的通项公式,以及等差、等比数列的前项和公式的应用,熟记等差、等比数列的通项公式和前项和公式是解答的关键,着重考查了学生的推理与运算能力.16、【解析】由,求得圆心,再根据圆过原点,求得半径即可.【详解】由,可得,即圆心为,又圆过原点,所以圆的半径,故圆的标准方程为故答案为:【点睛】本题主要考查圆的方程的求法,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)设圆心,轨迹两点的距离公式列出方程,整理方程即可;(2)设直线l的方程和点A、B的坐标,直线方程联立抛物线方程,消去x得出关于y的一元二次方程,结合根的判别式和韦达定理表示出弦,进而列出不等式,解之即可.【小问1详解】设圆心,由题意知,,整理,得,即圆心M的轨迹C方程为:;【小问2详解】由题意知,过点(-1,0)的直线l与抛物线C相交于点A、B,所以直线l的斜率存在且不为0,设直线,点,则,消去x,得,或,,同理可得,所以,即,由,得,解得,综上,或,所以或,即直线l的斜率的取值范围为.18、(1)(2)【解析】(1)直线的方程为,其中,联立直线与抛物线方程,由韦达定理结合已知条件可求得点的坐标;(2)直线的方程为,利用倾斜角定义知,,联立直线与抛物线方程,利用弦长公式求得,进而得解.小问1详解】由题意,直线的方程为,其中.设,联立,消去得..,,即.,即.,,∴点的坐标为.【小问2详解】由题意,直线的方程为,其中,为倾斜角,则,设.联立,消去得...19、(1)见解析;(2).【解析】(1)推导出,取BC的中点F,连结EF,可推出,从而平面,进而,由此得到平面,从而;(2)以为坐标原点,,所在直线分别为,轴,以过点且与平行的直线为轴,建立空间直角坐标系,利用向量法能求出平面与平面所成二面角的余弦值【详解】(1)∵是平行四边形,且∴,故,即取BC的中点F,连结EF.∵∴又∵平面平面∴平面∵平面∴∵平面∴平面,∵平面∴(2)∵,由(Ⅰ)得以为坐标原点,所在直线分别为轴,建立空间直角坐标系(如图),则∴设平面的法向量为,则,即得平面一个法向量为由(1)知平面,所以可设平面的法向量为设平面与平面所成二面角的平面角为,则即平面与平面所成二面角的平面角的余弦值为.【点睛】用空间向量求解立体几何问题的注意点(1)建立坐标系时要确保条件具备,即要证明得到两两垂直的三条直线,建系后要准确求得所需点的坐标(2)用平面的法向量求二面角的大小时,要注意向量的夹角与二面角大小间的关系,这点需要通过观察图形来判断二面角是锐角还是钝角,然后作出正确的结论20、(1)(2)或【解析】(1)由已知设圆C的方程为,点代入计算即可得出结果.(2)由已知可得圆心C到直线的距离,利用点到直线的距离公式计算即可求得值.【小问1详解】设圆心坐标为,半径为,圆C的圆心在直线上,.则圆C的方程为,圆C过点,则,解得:则,圆C的圆心坐标为.则圆C的方程为;【小问2详解】圆心C到直线的距离.则,解得或21、(1)证明见解析(2)【解析】(1)根据题意,利用线面垂直的判定定理证明平面ABD即可;(2)以A为原点,分别以,,方向为x轴,y轴,z轴的正方向的空间直角坐标系,分别求得平面BCD的一个法向量和平面DCM的一个法向量,然后由求解【小问1详解】证明:∵平面ABC,∴,又,,∴平面ABD,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 煤制甲醇课程设计致谢
- 机械课程设计zdl1b
- 河北省沧州市青县第二中学2024-2025学年上学期九年级数学期中考试试题
- 河南省信阳市息县2024-2025学年九年级上学期适应性测试(一)数学试卷
- 水族池加热器项目可行性实施报告
- 深圳宠物服装课程设计
- 木制首饰盒项目评价分析报告
- 抽屉市场环境与对策分析
- 米乳饮料课程设计
- 氢吸入器相关项目建议书
- 2021年新颁布印花税政策讲解课件
- 北师大版数学六年级上册第四单元《百分数的认识》知识点归纳
- 麻醉期间呼吸管理指南
- 安徽省PPT简介,安徽省PPT幻灯片模板
- 农行网银自助终端解决方案
- 双减背景下初中语文名著导读作业设计策略 论文
- 苏教版九年级上物理课课练
- 第二十一章 镧系元素
- 春江花月夜微课金奖优质获奖课件
- 2023年公司法讲义
- 口腔门诊诊所麻醉药品的登记
评论
0/150
提交评论