2025届北京市海淀区首都师范大学附属育新学校数学高二上期末质量检测模拟试题含解析_第1页
2025届北京市海淀区首都师范大学附属育新学校数学高二上期末质量检测模拟试题含解析_第2页
2025届北京市海淀区首都师范大学附属育新学校数学高二上期末质量检测模拟试题含解析_第3页
2025届北京市海淀区首都师范大学附属育新学校数学高二上期末质量检测模拟试题含解析_第4页
2025届北京市海淀区首都师范大学附属育新学校数学高二上期末质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届北京市海淀区首都师范大学附属育新学校数学高二上期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数图象如图所示,则的解析式可以为A. B.C. D.2.德国数学家米勒曾提出最大视角问题,这一问题一般的描述是:已知点A、B是的ON边上的两个定点,C是OM边上的一个动点,当C在何处时,最大?问题的答案是:当且仅当的外接圆与边OM相切于点C时,最大.人们称这一命题为米勒定理.已知点P、Q的坐标分别是(2,0),(4,0),R是y轴正半轴上的一动点,当最大时,点R的纵坐标为()A.1 B.C. D.23.已知抛物线的焦点为,点为抛物线上一点,点,则的最小值为()A. B.2C. D.34.过点作圆的切线,则切线的方程为()A. B.C.或 D.或5.已知双曲线:,直线经过点,若直线与双曲线的右支只有一个交点,则直线的斜率的取值范围是()A. B.C. D.6.“若”为真命题,那么p是(

)A. B.C. D.7.向量,向量,若,则实数()A. B.1C. D.8.设,则曲线在点处的切线的倾斜角是()A. B.C. D.9.《周髀算经》中有这样一个问题,从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气日影长依次成等差数列,若冬至、大寒、雨水的日影长的和为36.3尺,小寒、惊蛰、立夏的日影长的和为18.3尺,则冬至的日影长为()A4尺 B.8.5尺C.16.1尺 D.18.1尺10.已知函数,若在处取得极值,且恒成立,则实数的最大值为()A. B.C. D.11.在中,角A,B,C所对的边分别为a,b,c,,,则()A. B.1C.2 D.412.已知椭圆的一个焦点坐标为,则的值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.曲线在点处的切线的方程为__________.14.如图所示,将若干个点摆成三角形图案,每条边(包括两个端点)有个点,相应的图案中点的个数记为,按此规律,则___________,___________.15.已知5道试题中有3道代数题和2道几何题,每次从中抽取一道题,抽出的题不再放回,在第1次抽到代数题的条件下,第2次抽到几何题的概率为________.16.过点作斜率为的直线与椭圆相交于、两个不同点,若是的中点,则该椭圆的离心率___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱锥中,底面,.点,,分别为棱,,的中点,是线段的中点,,(1)求证:平面;(2)求二面角的正弦值;(3)已知点在棱上,且直线与直线所成角的余弦值为,求线段的长18.(12分)总书记指出:“我们既要绿水青山,也要金山银山.”新能源汽车环保、节能,以电代油,减少排放,既符合我国的国情,也代表了世界汽车产业发展的方向.工业部表示,到2025年中国的汽车总销量将达到3500万辆,并希望新能源汽车至少占总销量的五分之一.江苏某新能源公司年初购入一批新能源汽车充电桩,每台16200元,第一年每台设备的维修保养费用为1100元,以后每年增加400元,每台充电桩每年可给公司收益8100元(1)每台充电桩第几年开始获利?(2)每台充电桩在第几年时,年平均利润最大19.(12分)已知椭圆的左、右焦点分别为,,且椭圆过点,离心率,为坐标原点,过且不平行于坐标轴的动直线与有两个交点,,线段的中点为.(1)求的标准方程;(2)记直线斜率为,直线的斜率为,证明:为定值;(3)轴上是否存在点,使得为等边三角形?若存在,求出点的坐标;若不存在,请说明理由.20.(12分)已知数列的前n项和为,满足,(1)求证:数列是等比数列,并求数列的通项公式;(2)设,为数列的前n项和,①求;②若不等式对任意的正整数n恒成立,求实数的取值范围21.(12分)已知,,分别为三个内角,,的对边,.(Ⅰ)求;(Ⅱ)若=2,的面积为,求,.22.(10分)已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数)(1)求的值;(2)是否存在常数,使得对于定义域内的任意,恒成立?若存在,求出的值;若不存在,请说明理由

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用排除法:对于B,令得,,即有两个零点,不符合题意;对于C,当时,,当且仅当时等号成立,即函数在区间上存在最大值,不符合题意;对于D,的定义域为,不符合题意;本题选择A选项.点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项2、C【解析】由题意,借助米勒定理,可设出坐标,表示出的外接圆方程,然后在求解点R的纵坐标.【详解】因为点P、Q的坐标分别是(2,0),(4,0)是x轴正半轴上的两个定点,点R是y轴正半轴上的一动点,根据米勒定理,当的外接圆与y轴相切时,最大,由垂径定理可知,弦的垂直平分线必经过的外接圆圆心,所以弦的中点为(3,0),故弦中点的横坐标即为的外接圆半径,即,由垂径定理可得,圆心坐标为,故的外接圆的方程为,所以点R的纵坐标为.故选:C.3、D【解析】求出抛物线C的准线l的方程,过A作l的垂线段,结合几何意义及抛物线定义即可得解.【详解】抛物线的准线l:,显然点A在抛物线C内,过A作AM⊥l于M,交抛物线C于P,如图,在抛物线C上任取不同于点P的点,过作于点N,连PF,AN,,由抛物线定义知,,于是得,即点P是过A作准线l的垂线与抛物线C的交点时,取最小值,所以的最小值为3.故选:D4、C【解析】设切线的方程为,然后利用圆心到直线的距离等于半径建立方程求解即可.【详解】圆的圆心为原点,半径为1,当切线的斜率不存在时,即直线的方程为,不与圆相切,当切线的斜率存在时,设切线的方程为,即所以,解得或所以切线的方程为或故选:C5、D【解析】以双曲线的两条渐近线作为边界条件,即可保证直线与双曲线的右支只有一个交点.【详解】双曲线:的两条渐近线为和两渐近线的倾斜角分别为和由经过点的直线与双曲线的右支只有一个交点,可知直线的倾斜角取值范围为,故直线的斜率的取值范围是故选:D6、A【解析】求不等式的解集,根据解集判断p.【详解】由解得-2<x<4,所以p是.故选:A.7、C【解析】由空间向量垂直的坐标表示列方程即可求解.【详解】因为向量,向量,若,则,解得:,故选:C.8、C【解析】根据导数的概念可得,再利用导数的几何意义即可求解.【详解】因为,所以,则曲线在点处的切线斜率为,故所求切线的倾斜角为.故选:C9、C【解析】设等差数列,用基本量代换列方程组,即可求解.【详解】由题意,从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影长依次成等差数列,记为数列,公差为d,则有,即,解得:,即冬至的日影长为16.1尺.故选:C10、D【解析】根据已知在处取得极值,可得,将在恒成立,转化为,只需求,求出最小值即可得答案【详解】解:,,由在处取得极值,得,解得,所以,,其中,.当时,,此时函数单调递减,当时,,此时函数单调递增,故函数在处取得极小值,,恒成立,转化为,令,,则,,令得,当时,,此时函数单调递减,当时,,此时函数单调递增,所以,即得,故选:D11、C【解析】直接运用正弦定理可得,解得详解】由正弦定理,得,所以故选:C12、B【解析】根据题意得到得到答案.【详解】椭圆焦点在轴上,且,故.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求出导函数,得切线斜率后可得切线方程【详解】,∴切线斜率为,切线方程为故答案为:14、①.②.【解析】利用题中所给规律求出即可.【详解】解:由图可知,,,,,因为符合等差数列的定义且公差为所以,所以,故答案为:,.15、.【解析】设事件:第1次抽到代数题,事件:第2次抽到几何题,求得,结合条件概率的计算公式,即可求解.【详解】由题意,从5道试题中有3道代数题和2道几何题,每次从中抽取一道题,抽出不再放回,设事件:第1次抽到代数题,事件:第2次抽到几何题,则,,所以在第1次抽到代数题的条件下,第2次抽到几何题的概率为:.故答案为:.16、【解析】利用点差法可求得的值,利用离心率公式的值.【详解】设点、,则,由已知可得,由题意可得,将两个等式相减得,所以,,因此,.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2);(3)或【解析】本小题主要考查直线与平面平行、二面角、异面直线所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.首先要建立空间直角坐标系,写出相关点的坐标,证明线面平行只需求出平面的法向量,计算直线对应的向量与法向量的数量积为0,求二面角只需求出两个半平面对应的法向量,借助法向量的夹角求二面角,利用向量的夹角公式,求出异面直线所成角的余弦值,利用已知条件,求出的值.试题解析:如图,以A为原点,分别以,,方向为x轴、y轴、z轴正方向建立空间直角坐标系.依题意可得A(0,0,0),B(2,0,0),C(0,4,0),P(0,0,4),D(0,0,2),E(0,2,2),M(0,0,1),N(1,2,0).(1)证明:=(0,2,0),=(2,0,).设,为平面BDE的法向量,则,即.不妨设,可得.又=(1,2,),可得.因为平面BDE,所以MN//平面BDE.(2)解:易知为平面CEM的一个法向量.设为平面EMN的法向量,则,因为,,所以.不妨设,可得.因此有,于是.所以,二面角C—EM—N的正弦值为.(3)解:依题意,设AH=h(),则H(0,0,h),进而可得,.由已知,得,整理得,解得,或.所以,线段AH的长为或.【考点】直线与平面平行、二面角、异面直线所成角【名师点睛】空间向量是解决空间几何问题的锐利武器,不论是求空间角、空间距离还是证明线面关系利用空间向量都很方便,利用向量夹角公式求异面直线所成的角又快又准,特别是借助平面的法向量求线面角,二面角或点到平面的距离都很容易.18、(1)公司从第3年开始获利;(2)第9年时每台充电桩年平均利润最大3600元【解析】(1)判断已知条件是等差数列,然后求解利润的表达式,推出表达式求解n即可(2)利用基本不等式求解最大值即可【详解】(1)每年的维修保养费用是以1100为首项,400为公差的等差数列,设第n年时累计利润为f(n),f(n)=8100n-[1100+1500+…+(400n+700)]-16200=8100n-n(200n+900)-16200=-200n2+7200n-16200=-200(n2-36n+81),开始获利即f(n)>0,∴-200(n2-36n+81)>0,即n2-36n+81<0,解得,所以公司从第3年开始获利;(2)每台充电桩年平均利润为当且仅当,即n=9时,等号成立即在第9年时每台充电桩年平均利润最大3600元【点睛】本题考查数列与函数的实际应用,基本不等式的应用,考查转化思想以及计算能力,是中档题19、(1);(2)证明见解析;(3)不存在,理由见解析.【解析】(1)由椭圆所过点及离心率,列方程组,再求解即得;(2)设出点A,B坐标并列出它们满足的关系,利用点差法即可作答;(3)设直线的方程,联立直线与椭圆的方程,借助韦达定理求得,,再结合为等边三角形的条件即可作答.【详解】(1)显然,半焦距c有,即,则,所以椭圆的标准方程为;(2)设,,,,由(1)知,,两式相减得,即,而弦的中点,则有,所以;(3)假定存在符合要求的点P,由(1)知,设直线的方程为,由得:,则,,于是得,从而得点,,因为等边三角形,即有,,因此,,,从而得,整理得,无解,所以在y轴上不存在点,使得为等边三角形.20、(1)证明见解析,(2)①;②【解析】(1)由得到,即可得到,从而得证,即可求出的通项公式,从而得到的通项公式;(2)①由(1)可得,再利用错位相减法求和即可;②利用作差法证明的单调性,即可得到,即可得到,再解一元二次不等式即可;【小问1详解】证明:由,,当时,可得,解得,当时,,又,两式相减得,所以,所以,即,则数列是首项为,公比为的等比数列;所以,所以【小问2详解】解:①由(1)可得,所以,所以,所以,所以整理得②由①知,所以,即单调递增,所以,因为不等式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论