福建省长乐高级中学2025届数学高一上期末学业水平测试试题含解析_第1页
福建省长乐高级中学2025届数学高一上期末学业水平测试试题含解析_第2页
福建省长乐高级中学2025届数学高一上期末学业水平测试试题含解析_第3页
福建省长乐高级中学2025届数学高一上期末学业水平测试试题含解析_第4页
福建省长乐高级中学2025届数学高一上期末学业水平测试试题含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省长乐高级中学2025届数学高一上期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的图像必经过点A.(0,2) B.(4,3)C.(4,2) D.(2,3)2.下列函数中,同时满足:①在上是增函数,②为奇函数,③最小正周期为的函数是()A. B.C. D.3.已知锐角终边上一点A的坐标为,则的弧度数为()A.3 B.C. D.4.“”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件5.已知集合,,,则()A. B.C. D.6.若sinx<0,且sin(cosx)>0,则角是A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角7.定义在上的偶函数在时为增函数,若实数满足,则的取值范围是A. B.C. D.8.若a<b<0,则下列不等式中成立的是()A.-a<-bC.a>-b D.9.已知,则函数与函数的图象可能是()A. B.C. D.10.已知,且,对任意的实数,函数不可能A.是奇函数 B.是偶函数C.既是奇函数又是偶函数 D.既不是奇函数又不是偶函数二、填空题:本大题共6小题,每小题5分,共30分。11.函数是定义在R上的奇函数,当时,2,则在R上的解析式为________.12.某公司在甲、乙两地销售同一种农产品,利润(单位:万元)分别为,,其中x为销售量(单位:吨),若该公司在这两地共销售10吨农产品,则能获得的最大利润为______万元.13.已知幂函数f(x)的图象过点(4,2),则f=________.14.设是定义在区间上的严格增函数.若,则a的取值范围是______15.若函数y=f(x)是函数y=2x的反函数,则f(2)=______.16.已知函数,若,则实数的取值范围为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知点,直线:.(Ⅰ)求过点且与直线垂直的直线方程;(Ⅱ)直线为过点且和直线平行的直线,求平行直线,的距离.18.声强级(单位:)由公式给出,其中声强(单位:).(1)一般正常人听觉能忍受的最高声强为,能听到的最低声强为,求人听觉的声强级范围;(2)在一演唱会中,某女高音的声强级高出某男低音的声强级,请问该女高音的声强是该男低音声强的多少倍?19.已知函数,若,且,.(1)求与的值;(2)当时,函数的图象与的图象仅有一个交点,求正实数的取值范围.20.已知集合,或(1)若,求a取值范围;(2)若,求a的取值范围21.已知函数,其中向量,,.(1)求函数的最大值;(2)求函数的单调递增区间.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据指数型函数的性质,即可确定其定点.【详解】令得,所以,因此函数过点(4,3).故选B【点睛】本题主要考查函数恒过定点的问题,熟记指数函数的性质即可,属于基础题型.2、D【解析】根据三角函数的图像和性质逐项分析即可求解.【详解】A中的最小正周期为,不满足;B中是偶函数,不满足;C中的最小正周期为,不满足;D中是奇函数﹐且周期,令,∴,∴函数的递增区间为,,∴函数在上是增函数,故D正确.故选:D.3、C【解析】先根据定义得正切值,再根据诱导公式求解【详解】由题意得,选C.【点睛】本题考查三角函数定义以及诱导公式,考查基本分析化简能力,属基础题.4、B【解析】根据指数函数的性质求的解集,由充分、必要性的定义判断题设条件间的关系即可.【详解】由,则,所以“”是“”的充分不必要条件.故选:B5、C【解析】解一元二次不等式求出集合,解不等式求出集合,再进行交集运算即可求解.【详解】因为,,所以,故选:C.6、D【解析】根据三角函数角的范围和符号之间的关系进行判断即可【详解】∵﹣1≤cosx≤1,且sin(cosx)>0,∴0<cosx≤1,又sinx<0,∴角x为第四象限角,故选D【点睛】本题主要考查三角函数中角的象限的确定,根据三角函数值的符号去判断象限是解决本题的关键7、C【解析】因为定义在上的偶函数,所以即又在时为增函数,则,解得故选点睛:本题考查了函数的奇偶性,单调性和运用,考查对数不等式的解法及运算能力,所求不等式中与由对数式运算法则可知互为相反数,与偶函数的性质结合可将不等式化简,借助函数在上是增函数可确定在为减函数,利用偶函数的对称性可得到自变量的范围,从而求得关于的不等式,结合对数函数单调性可得到的取值范围8、C【解析】根据函数y=x的单调性,即可判断选项A是否正确;根据函数y=1x在-∞,0上单调递减,即可判断选项B是否正确;在根据不等式的性质即可判断选项【详解】因为a<b<0,所以-a>-b>0,又函数y=x在0,+∞上单调递增,所以因为a<b<0,函数y=1x在-∞,0上单调递减,所以因为a<b<0,所以-a>-b>0,又a=-a,所以a>-b,故因为a<b<0,两边同时除以b,可知ab>1,故D故选:C.9、D【解析】根据对数关系得,所以函数与函数的单调性相同即可得到选项.【详解】,所以,,不为1的情况下:,函数与函数的单调性相同,ABC均不满足,D满足题意.故选:D【点睛】此题考查函数图象的辨析,根据已知条件找出等量关系或不等关系,分析出函数的单调性得解.10、C【解析】,当时,,为偶函数当时,,为奇函数当且时,既不奇函数又不是偶函数故选二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由是定义域在上的奇函数,根据奇函数的性质,可推得的解析式.【详解】当时,2,即,设,则,,又为奇函数,,所以在R上的解析式为.故答案为:.12、34【解析】设公司在甲地销售农产品吨,则在乙地销售农产品吨,根据利润函数表示出利润之和,利用配方法求出函数的最值即可【详解】设公司在甲地销售农产品()吨,则在乙地销售农产品吨,,利润为,又且故当时,能获得的最大利润为34万元故答案为:34.13、【解析】根据图象过点的坐标,求得幂函数解析式,再代值求得函数值即可.【详解】设幂函数为y=xα(α为常数).∵函数f(x)的图象过点(4,2),∴2=4α,∴α=,∴f(x)=,∴f=.故答案为:.【点睛】本题考查幂函数解析式的求解,以及幂函数函数值的求解,属综合简单题.14、.【解析】根据题意,列出不等式组,即可求解.【详解】由题意,函数是定义在区间上的严格增函数,因为,可得,解得,所以实数a的取值范围是.故答案为:.15、1【解析】根据反函数的定义即可求解.【详解】由题知y=f(x)=,∴f(2)=1.故答案为:1.16、或【解析】令,分析出函数为上的减函数且为奇函数,将所求不等式变形为,可得出关于的不等式,解之即可.【详解】令,对任意的,,故函数的定义域为,因为,则,所以,函数为奇函数,当时,令,由于函数和在上均为减函数,故函数在上也为减函数,因为函数在上为增函数,故函数在上为减函数,所以,函数在上也为减函数,因为函数在上连续,则在上为减函数,由可得,即,所以,,即,解得或.故答案为:或.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由题知直线的斜率为,则所求直线的斜率为,设方程为,代点入直线方程,解得,即可得直线方程;(Ⅱ)因为直线过点且与直线平行,所以两平行线之间的距离等于点到直线的距离,故而求出到直线的距离即可.【详解】(Ⅰ)由题知,直线的斜率为,则所求直线的斜率为,设所求直线方程为,代点入直线方程,解得,故所求直线方程为,即;(Ⅱ)因为直线过点且与直线平行,所以直线,之间的距离等于点到直线的距离,由题知点且到直线的距离所以两平行线,之间的距离为.【点睛】本题考查了利用直线间的垂直平行关系求直线方程,以及相关距离的应用,要求学生对相关知识熟练掌握,属于简单题.18、(1).(2)倍.【解析】(1)由题知:,∴,∴,∴人听觉的声强级范围是.(2)设该女高音的声强级为,声强为,该男低音的声强级为,声强为,由题知:,则,∴,∴.故该女高音的声强是该男低音声强的倍.19、(1),.(2).【解析】(1)由,可得,结合,得,,则,;(2),,,分三种情况讨论,时,时,结合二次函数对称轴与单调性,以及对数函数的单调性,可筛选出符合题意的正实数的取值范围.试题解析:(1)设,则,因为,因为,得,,则,.(2)由题可知,,.当时,,在上单调递减,且,单调递增,且,此时两个图象仅有一个交点.当时,,在上单调递减,在上单调递增,因为两个图象仅有一个交点,结合图象可知,得.综上,正实数的取值范围是.20、(1)(2)【解析】(1)根据交集的定义,列出关于的不等式组即可求解;(2)由题意,,根据集合的包含关系列出关于的不等式组即可求解;【小问1详解】解:∵或,且,∴,解得,∴a的取值范围为;【小问2详解】解:∵或,且,∴,∴或,即或,∴a的取值范围是.21、见解析【解析】【试题分析】(1)利用向量的运算,求出的表达式并利用辅助角公式化简,由此求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论