2025届安徽省芜湖县一中数学高二上期末复习检测试题含解析_第1页
2025届安徽省芜湖县一中数学高二上期末复习检测试题含解析_第2页
2025届安徽省芜湖县一中数学高二上期末复习检测试题含解析_第3页
2025届安徽省芜湖县一中数学高二上期末复习检测试题含解析_第4页
2025届安徽省芜湖县一中数学高二上期末复习检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届安徽省芜湖县一中数学高二上期末复习检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“”是“方程为双曲线方程”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.椭圆与(0<k<9)的()A.长轴的长相等B.短轴的长相等C.离心率相等D.焦距相等3.若空间中n个不同的点两两距离都相等,则正整数n的取值A.至多等于3 B.至多等于4C.等于5 D.大于54.在正方体ABCD﹣A1B1C1D1中,E为棱A1B1上一点,且AB=2,若二面角B1﹣BC1﹣E为45°,则四面体BB1C1E的外接球的表面积为()A.π B.12πC.9π D.10π5.设,是双曲线()的左、右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为A. B.C. D.6.已知函数在处取得极值,则的极大值为()A. B.C. D.7.等差数列中,,则()A. B.C. D.8.将一枚骰子先后抛掷两次,若先后出现的点数分别记为a,b,则直线到原点的距离不超过1的概率是()A. B.C. D.9.设等差数列的前n项和为,,公差为d,,,则下列结论不正确的是()A. B.当时,取得最大值C. D.使得成立的最大自然数n是1510.焦点在轴的正半轴上,且焦点到准线的距离为的抛物线的标准方程是()A. B.C. D.11.如果双曲线的一条渐近线方程为,且经过点,则双曲线的标准方程是()A. B.C. D.12.已知数列为等差数列,则下列数列一定为等比数列的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知=(3,a+b,a﹣b)(a,b∈R)是直线l的方向向量,=(1,2,3)是平面α的法向量,若l⊥α,则5a+b=__14.在等比数列中,,,若数列满足,则数列的前项和为________15.已知直线与圆交于两点,则面积的最大值为__________.16.抛物线的焦点坐标为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆:()的左、右焦点分别为,焦距为,过点作直线交椭圆于两点,的周长为.(1)求椭圆的方程;(2)若斜率为的直线与椭圆相交于两点,求定点与交点所构成的三角形面积的最大值.18.(12分)如图所示,在长方体ABCD-A1B1C1D1中,E,F分别是AB,A1C的中点,AD=AA1=2,AB=(1)求证:EF∥平面ADD1A1;(2)求平面EFD与平面DEC的夹角的余弦值;(3)在线段A1D1上是否存在点M,使得BM⊥平面EFD?若存在,求出的值;若不存在,请说明理由19.(12分)已知数列的前n项和为,,且(1)求数列的通项公式;(2)令,记数列的前n项和为,求证:20.(12分)人类社会正进入数字时代,网络成为了必不可少的工具,智能手机也给我们的生活带来了许多方便.但是这些方便、时尚的手机,却也让你的眼睛离健康越来越远.为了了解手机对视力的影响程度,某研究小组在经常使用手机的中学生中进行了随机调查,并对结果进行了换算,统计了中学生一个月中平均每天使用手机的时间x(小时)和视力损伤指数的数据如下表:平均每天使用手机的时间x(小时)1234567视力损伤指数y25812151923(1)根据表中数据,求y关于x的线性回归方程.(2)该小组研究得知:视力的下降值t与视力损伤指数y满足函数关系式,如果小明在一个月中平均每天使用9个小时手机,根据(1)中所建立的回归方程估计小明视力的下降值(结果保留一位小数).参考公式及数据:,..21.(12分)已知平面内两点,,动点P满足(1)求动点P的轨迹方程;(2)过定点的直线l交动点P的轨迹于不同的两点M,N,点M关于y轴对称点为,求证直线过定点,并求出定点坐标22.(10分)已知双曲线与有相同的渐近线,且经过点.(1)求双曲线的方程;(2)已知直线与双曲线交于不同的两点,且线段的中点在圆上,求实数的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先求出方程表示双曲线时满足的条件,然后根据“小推大”的原则进行判断即可.【详解】因方程为双曲线方程,所以,所以“”是“方程为双曲线方程”的充要条件.故选:C.2、D【解析】根据椭圆方程求得两个椭圆的,由此确定正确选项.【详解】椭圆与(0<k<9)的焦点分别在x轴和y轴上,前者a2=25,b2=9,则c2=16,后者a2=25-k,b2=9-k,则显然只有D正确故选:D3、B【解析】先考虑平面上的情况:只有三个点的情况成立;再考虑空间里,只有四个点的情况成立,注意运用外接球和三角形三边的关系,即可判断解:考虑平面上,3个点两两距离相等,构成等边三角形,成立;4个点两两距离相等,由三角形的两边之和大于第三边,则不成立;n大于4,也不成立;空间中,4个点两两距离相等,构成一个正四面体,成立;若n>4,由于任三点不共线,当n=5时,考虑四个点构成的正四面体,第五个点,与它们距离相等,必为正四面体的外接球的球心,由三角形的两边之和大于三边,故不成立;同理n>5,不成立故选B点评:本题考查空间几何体的特征,主要考查空间两点的距离相等的情况,注意结合外接球和三角形的两边与第三边的关系,属于中档题和易错题4、D【解析】连接交于,可得,利用线面垂直的判定定理可得:平面,于是,可得而为二面角的平面角,再求出四面体的外接球半径,进而利用球的表面积计算公式得出结论【详解】连接交于,则,易知,则平面,所以,从而为二面角的平面角,则.因为,所以,所以四面体的外接球半径故四面体BB1C1E的外接球的表面积为故选:D【点睛】本题考查了正方体的性质、线面垂直的判定与性质定理、二面角的平面角、球的表面积计算公式,考查了推理能力与计算能力,属于中档题5、B【解析】分析:由双曲线性质得到,然后在和在中利用余弦定理可得详解:由题可知在中,在中,故选B.点睛:本题主要考查双曲线的相关知识,考查了双曲线的离心率和余弦定理的应用,属于中档题6、B【解析】首先求出函数的导函数,依题意可得,即可求出参数的值,从而得到函数解析式,再根据导函数得到函数单调性,即可求出函数的极值点,从而求出函数的极大值;【详解】解:因为,所以,依题意可得,即,解得,所以定义域为,且,令,解得或,令解得,即在和上单调递增,在上单调递减,即在处取得极大值,在处取得极小值,所以;故选:B7、C【解析】由等差数列的前项和公式和性质进行求解.【详解】由题意,得.故选:C.8、C【解析】先由条件得出a,b满足,得出满足的基本事件数,再求出总的基本事件数,从而可得答案.【详解】直线到原点的距离不超过1,则所以当时,可以为5,6当时,可以为4,5,6当时,可以为4,5,6当时,可以为2,3,4,5,6当时,可以为1,2,3,4,5,6当时,可以为1,2,3,4,5,6满足的共有25种结果.将一枚骰子先后抛掷两次,若先后出现的点数分别记为a,b,共有种结果所以满足条件的概率为故选:C9、D【解析】根据等差数列等差中项的性质,求和公式及单调性分别判断.【详解】因为,,所以,则,故A正确;当时,取得最大值,故B正确;,故C正确;因为,,,所以使得成立的最大自然数是,故D错误.故选:D10、A【解析】直接由焦点位置及焦点到准线的距离写出标准方程即可.【详解】由焦点在轴的正半轴上知抛物线开口向上,又焦点到准线的距离为,故抛物线的标准方程是.故选:A.11、D【解析】根据渐近线方程设出双曲线方程,然后将点代入,进而求得答案.【详解】因为双曲线的一条渐近线方程为,所以设双曲线方程为,将代入得:,即双曲线方程为.故选:D.12、A【解析】根据等比数列的定义判断【详解】设的公差是,即,显然,且是常数,是等比数列,若中一个为1,则,则不是等比数列,只要,,都不可能是等比数列,如,,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、36【解析】根据方向向量和平面法向量的定义即可得出,然后即可得出,然后求出a,b的值,进而求出5a+b的值【详解】∵l⊥α,∴,∴,解得,∴故答案为:3614、【解析】求出等比数列的通项公式,可得出的通项公式,推导出数列为等差数列,利用等差数列的求和公式即可得解.【详解】设等比数列的公比为,则,则,所以,,则,所以,数列为等差数列,故数列的前项和为.故答案为:.15、##【解析】先求出的范围,再利用面积公式可求面积的最大值.【详解】圆即为,直线为过原点的直线,如图,连接,故,解得,此时,故的面积为,当且仅当时等号成立,此时即,故答案为:.16、【解析】化成标准形式,结合焦点定义即可求解.【详解】由,得,故抛物线的焦点坐标为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据题意可得,,再由,即可求解.(2)设直线的方程为,将直线与椭圆方程联立求得关于的方程,利用弦长公式求出,再利用点到直线的距离求出点到直线的距离,利用三角形的面积公式配方即可求解.【详解】解(1)由题意得:,,∴,∴∴椭圆的方程为(2)∵直线的斜率为,∴可设直线的方程为与椭圆的方程联立可得:①设两点的坐标为,由韦达定理得:,∴点到直线的距离,∴由①知:,,令,则,∴令,则在上的最大值为∴的最大值为综上所述:三角形面积的最大值2.【点睛】本题考查了根据求椭圆的标准方程,考查了直线与椭圆额位置关系中三角形面积问题,考查了学生的计算能力,属于中档题.18、(1)证明见解析;(2);(3)不存在;理由见解析【解析】(1)连接AD1,A1D,交于点O,所以点O是A1D的中点,连接FO,根据判定定理证明四边形AEFO是平行四边形,进而得到线面平行;(2)建立坐标系,求出两个面的法向量,求得两个法向量的夹角的余弦值,进而得到二面角的夹角的余弦值;(3)假设在线段A1D1上存在一点M,使得BM⊥平面EFD,设出点M的坐标,由第二问得到平面EFD的一个法向量,判断出和该法向量不平行,故不存在满足题意的点M.【详解】(1)证明:连接AD1,A1D,交于点O,所以点O是A1D的中点,连接FO因为F是A1C的中点,所以OF∥CD,OF=CD因AE∥CD,AE=CD,所以OF∥AE,OF=AE所以四边形AEFO是平行四边形所以EF∥AO因为EF⊄平面ADD1A1,AO⊂平面ADD1A1,所以EF∥平面ADD1A1(2)以点A为坐标原点,直线AB,AD,AA1分别为x轴,y轴,z轴建立空间直角坐标系,因为点E,F分别是AB,A1C的中点,AD=AA1=2,AB=,所以B(,0,0),D(0,2,0),E,F所以=,=(0,1,1)设平面EFD的法向量为,则即令y=1,则z=-1,x=2所以,由题知,平面DEC的一个法向量为m=(0,0,1),所以cos<,>==所以平面EFD与平面DEC的夹角的余弦值是(3)假设在线段A1D1上存在一点M,使得BM⊥平面EFD设点M的坐标为(0,t,2)(0≤t≤2),则=(,t,2)因为平面EFD的一个法向量为,而与不平行,所以在线段A1D1上不存在点M,使得BM⊥平面EFD19、(1)(2)证明见解析【解析】(1)依题意可得,即可得到是以为首项,为公比的等比数列,从而求出数列的通项公式;(2)由(1)可得,利用错位相减法求和,即可证明;【小问1详解】解:因为,,所以,所以是以为首项,为公比的等比数列,所以,所以;【小问2详解】解:由(1)可知,所以①,所以②;①②得所以;20、(1)(2)0.3【解析】(1)由表格数据及参考公式即可求解;(2)由(1)中线性回归方程计算小明的视力损伤指数,再将代入视力的下降值t与视力损伤指数y满足的函数关系式即可求解.【小问1详解】解:由表格数据得:,,,,所以线性回归方程为;【小问2详解】解:小明的视力损伤指数,所以,估计小明视力的下降值为0.3.21、(1)(2)证明见解析,定点坐标为【解析】(1)直接由斜率关系计算得到;(2)设出直线,联立椭圆方程,韦达定理求出,再结合三点共线,求出参数,得到过定点.小问1详解】设动点,由已知有,整理得,所以动点的轨迹方程为;【小问2详解】由已知条件可知直线和直线斜率一定存在,设直线方程为,,,则,由,可得,则,即为,,,因为直线过定点,所以三点共线,即,即,即,即,即得,整理,得,满足,则直线方程为,恒过定点.【点睛】本题关键在于设出带有两个参数的直线的方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论