2025届重庆市涪陵区涪陵高中高二数学第一学期期末监测模拟试题含解析_第1页
2025届重庆市涪陵区涪陵高中高二数学第一学期期末监测模拟试题含解析_第2页
2025届重庆市涪陵区涪陵高中高二数学第一学期期末监测模拟试题含解析_第3页
2025届重庆市涪陵区涪陵高中高二数学第一学期期末监测模拟试题含解析_第4页
2025届重庆市涪陵区涪陵高中高二数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届重庆市涪陵区涪陵高中高二数学第一学期期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.命题“”的否定是()A. B.C. D.2.已知双曲线的左焦点为F,O为坐标原点,M,N两点分别在C的左、右两支上,若四边形OFMN为菱形,则C的离心率为()A. B.C. D.3.直线的一个法向量为()A. B.C. D.4.已知随机变量,且,,则为()A.0.1358 B.0.2716C.0.1359 D.0.27185.如图,是边长为4的等边三角形的中位线,将沿折起,使得点A与P重合,平面平面,则四棱锥外接球的表面积是()A. B.C. D.6.下列说法正确的个数有()个①在中,若,则②是,,成等比数列的充要条件③直线是双曲线的一条渐近线④函数的导函数是,若,则是函数的极值点A.0 B.1C.2 D.37.已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=()A.2 B.3C.6 D.98.将函数图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,再将所得图象向右平移个单位长度,得到函数的图象,则()A. B.C. D.9.设a,b,c分别是内角A,B,C的对边,若,,依次成公差不为0的等差数列,则()A.a,b,c依次成等差数列 B.,,依次成等差数列C.,,依次成等比数列 D.,,依次成等比数列10.总体由编号为的30个个体组成.利用所给的随机数表选取6个个体,选取的方法是从随机数表第1行的第3列和第4列数字开始,由左到右一次选取两个数字,则选出来的第5个个体的编号为()A.20 B.26C.17 D.0311.圆与直线的位置关系为()A.相切 B.相离C.相交 D.无法确定12.4位同学报名参加四个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A.24种 B.81种C.64种 D.256种二、填空题:本题共4小题,每小题5分,共20分。13.如图,在棱长为1的正方体中,点M为线段上的动点,下列四个结论:①存在点M,使得直线AM与直线夹角为30°;②存在点M,使得与平面夹角的正弦值为;③存在点M,使得三棱锥体积为;④存在点M,使得,其中为二面角的大小,为直线与直线AB所成的角则上述结论正确的有______.(填上正确结论的序号)14.中国三大名楼之一的黄鹤楼因其独特的建筑结构而闻名,其外观有五层而实际上内部有九层,隐喻“九五至尊”之意,为迎接2022年春节的到来,有网友建议在黄鹤楼内部挂灯笼进行装饰,若在黄鹤楼内部九层塔楼共挂1533盏灯笼,且相邻的两层中,下一层的灯笼数是上一层灯笼数的两倍,则内部塔楼的顶层应挂______盏灯笼15.总书记在“十九大”报告中指出:坚定文化自信,推动中华优秀传统文化创造性转化.“杨辉三角”揭示了二项式系数在三角形中的一种几何排列规律,最早在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现,欧洲数学家帕斯卡在1654年才发现这一规律,比杨辉要晚近四百年.“杨辉三角”是中国数学史上的一个伟大成就,激发起一批又一批数学爱好者的探究欲望.如图所示,在由二项式系数所构成的“杨辉三角中,第10行第8个数是______16.动点M在圆上移动,则M与定点连线的中点P的轨迹方程为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)各项都为正数的数列的前项和为,且满足.(1)求数列的通项公式;(2)求;(3)设,数列的前项和为,求使成立的的最小值.18.(12分)已知平面直角坐标系上一动点满足:到点的距离是到点的距离的2倍.(1)求点的轨迹方程;(2)若点与点关于直线对称,求的最大值.19.(12分)已知椭圆,斜率为的动直线与椭圆交于A,B两点,且直线与圆相切.(1)若,求直线的方程;(2)求三角形的面积的取值范围.20.(12分)已知椭圆的离心率为,以坐标原点为圆心,以椭圆M的短半轴长为半径的圆与直线有且只有一个公共点(1)求椭圆M的标准方程;(2)过椭圆M的右焦点F的直线交椭圆M于A,B两点,过F且垂直于直线的直线交椭圆M于C,D两点,则是否存在实数使成立?若存在,求出的值;若不存在,请说明理由21.(12分)【阅读材料1】我们在研究两个变量之间的相关关系时,往往先选取若干个样本点(),(),……,(),将样本点画在平面直角坐标系内,就得到样本的散点图.观察散点图,如果所有样本点都落在某一条直线附近,变量之间就具有线性相关关系,如果所有的样本点都落在某一非线性函数图象附近,变量之间就有非线性相关关系.在统计学中经常选择线性或非线性(函数)回归模型来刻画相关关系,并且可以用适当的方法求出回归模型的方程,还常用相关指数R2来刻画回归的效果,相关指数R2的计算公式为:当R2越大时,回归方程的拟合效果越好;当R2越小时,回归方程的拟合效果越差,R2是常用的选择模型的指标之一,在实际应用中应该尽量选择R2较大的回归模型.【阅读材料2】2021年6月17日9时22分,我国酒泉卫星发射中心用长征二号F遥十二运载火箭,成功将神舟十二号载人飞船送入预定轨道,顺利将聂海胜、刘伯明、汤洪胺3名航天员送入太空,发射取得圆满成功,这标志着中国人首次进入自己的空间站.某公司负责生产的A型材料是神舟十二号的重要零件,该材料应用前景十分广泛,该公司为了将A型材料更好地投入商用,拟对A型材料进行应用改造,根据市场调研与模拟,得到应用改造投入x(亿元)与产品的直接收益y(亿元)的数据统计如下:序号123456789101112x2346810132122232425y1522274048546068.56867.56665当0<x≤13时,建立了与的两个回归模型:模型①:;模型②:;当x>13时,确定y与x满足的线性回归直线方程为.根据以上阅读材料,解答以下问题:(1)根据下列表格中的数据,比较当0<x≤13时模型①,②的相关指数R2的大小,并选择拟合效果更好的模型.回归模型模型①模型②回归方程79.1320.2(2)当应用改造的投入为20亿元时,以回归直线方程为预测依据,计算公司的收益约为多少.附:①若最小二乘法求得回归直线方程为,则;②③,当时,.22.(10分)已知函数.(1)当时,求曲线在点处的切线方程;(2)若,且,讨论函数的零点个数.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】特称命题的否定,先把存在量词改为全称量词,再把结论进行否定即可.【详解】命题“”的否定是“”.故选:C2、C【解析】由题意可得且,从而求出点的坐标,将其代入双曲线方程中,即可得出离心率.【详解】由题意,四边形为菱形,如图,则且,分别为的左,右支上的点,设点在第二象限,在第一象限.由双曲线的对称性,可得,过点作轴交轴于点,则,所以,则,所以,所以,则,即,解得,或,由双曲线的离心率,所以取,则故选:C3、B【解析】直线化为,求出直线的方向向量,因为法向量与方向向量垂直,逐项验证可得答案.【详解】直线的方向向量为,化为,直线的方向向量为,因为法向量与方向向量垂直,设法向量为,所以,由于,A错误;,故B正确;,故C错误;,故D错误;故选:B.4、C【解析】根据正态分布的对称性可求概率.【详解】由题设可得,,故选:C.5、A【解析】分别取的中点,易得,则点为四边形的外接圆的圆心,则四棱锥外接球的球心在过点且垂直平面的直线上,设球心为,设外接球的半径为,,利用勾股定理求得半径,从而可得出答案.【详解】解:分别取的中点,在等边三角形中,,是中位线,则都是等边三角形,所以,所以点为四边形的外接圆的圆心,则四棱锥外接球的球心在过点且垂直平面的直线上,设球心为,由为的中点,所以,因为平面平面,且平面平面,平面,所以平面,则,设外接球半径为,,,则,,所以,解得,所以,所以四棱锥外接球的表面积是.故选:A.第II卷6、B【解析】根据三角函数、等比数列、双曲线和导数知识逐项分析即可求解.【详解】①在中,则有,因,所以,又余弦函数在上单调递减,所以,故①正确,②当且时,此时,但是,,不成等比数列,故②错误,③由双曲线可得双曲线的渐近线为,故③错误,④“”是“是函数的极值点”的必要不充分条件,故④错误.故选:B.7、C【解析】利用抛物线的定义建立方程即可得到答案.【详解】设抛物线的焦点为F,由抛物线的定义知,即,解得.故选:C.【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题.8、A【解析】根据三角函数图象的变换,由逆向变换即可求解.【详解】由已知的函数逆向变换,第一步,向左平移个单位长度,得到的图象;第二步,图象上所有点的横坐标缩短到原来的,纵坐标不变,得到的图象,即的图象.故.故选:A9、B【解析】由等差数列的性质得,利用正弦定理、余弦定理推导出,从而,,依次成等差数列.【详解】解:∵a,b,c分别是内角A,B,C的对边,,,依次成公差不为0的等差数列,∴,根据正弦定理可得,∴,∴,∴,∴,,依次成等差数列.故选:B.【点睛】本题考查三个数成等差数列或等比数列的判断,考查等差数列、等比数列的性质、正弦定理、余弦定理等基础知识,考查运算求解能力,考查函数与方程思想,属于中档题.10、D【解析】根据题目要求选取数字,在30以内的正整数符合要求,不在30以内的不合要求,舍去,与已经选取过重复的舍去,找到第5个个体的编号.【详解】已知选取方法为从第一行的第3列和第4列数字开始,由左到右一次选取两个数字,所以选取出来的数字分别为12(符合要求),13(符合要求),40(不合要求),33(不合要求),20(符合要求),38(不合要求),26(符合要求),13(与前面重复,不合要求),89(不合要求),51(不合要求),03(符合要求),故选出来的第5个个体的编号为03.故选:D11、C【解析】先计算出直线恒过定点,而点在圆内,所以圆与直线相交.【详解】直线可化为,所以恒过定点.把代入,有:,所以在圆内,所以圆与直线的位置关系为相交.故选:C12、D【解析】利用分步乘法计数原理进行计算.【详解】每位同学均有四种选择,故不同的报名方法有种.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、②③【解析】对①:由连接,,由平面,即可判断;对③:设到平面的距离为,则,所以即可判断;对④:以为坐标原点建立如图所示的空间直角坐标系,设,利用向量法求出与,比较大小即可判断;对②:设与平面夹角为,利用向量法求出,即可求解判断.【详解】解:对①:连接,,在正方体中,由平面,可得,又,,所以平面,所以,故①错误;对③:设到平面的距离为,则,所以,故③正确;对④:以为坐标原点建立如图所示的空间直角坐标系,设,则,0,,,0,,,,,,,,所以,,,,,,设平面的法向量为,,,则,即,取,,,又,1,是平面的一个法向量,又二面角为锐二面角或直角,所以,,,又,,,故④错误对②:由④的解析知,,,,设平面的法向量为,则,即,取,则,设与平面夹角为,令,即,又,解得或,故②正确.故答案为:②③.14、【解析】根据给定条件,各层灯笼数从上到下排成一列构成等比数列,利用等比数列前n项和公式计算作答.【详解】依题意,各层灯笼数从上到下排成一列构成等比数列,公比,前9项和为1533,于是得,解得,所以内部塔楼的顶层应挂3盏灯笼.故答案为:315、120【解析】根据二项式的展开式系数的相关知识即可求解.【详解】因为,二项式展开式第项的系数为,所以,第10行第8个数是.故答案为:12016、##【解析】设,中点,根据中点坐标公式求出,代入圆的标准方程即可得出结果.【详解】设,中点,则,即,因为在圆上,代入得故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】(1)直接利用数列的递推关系式,结合等差数列的定义,即可求得数列的通项公式;(2)化简,结合裂项相消法求出数列的和;(3)利用分组法求得,结合,即可求得的最小值.【小问1详解】解:因为各项都为正数的数列的前项和为,且满足,当时,解得;当时,;两式相减可得,整理得(常数),故数列是以2为首项,2为公差的等差数列;所以.【小问2详解】解:由,可得,所以,所以.【小问3详解】解:由,可得,所以当为偶数时,,因为,且为偶数,所以的最小值为48;当为奇数时,,不存在最小的值,故当为48时,满足条件.18、(1)(2)【解析】(1)直接法求动点的轨迹方程,设点,列方程即可.(2)点关于直线对称的对称点问题,可以先求出点到直线的距离最值的两倍就是的距离,也可以求出点的轨迹方程直接求解的距离.【小问1详解】设,由题意,得:,化简得,所以点轨迹方程为【小问2详解】方法一:设,因为点与点关于点对称,则点坐标为,因为点在圆,即上运动,所以,所以点的轨迹方程为,所以两圆的圆心分别为,半径均为2,则.方法二:由可得:所以点的轨迹是以为圆心,2为半径的圆轨迹的圆心到直线的距离为:19、(1)或(2)【解析】(1)设直线,利用圆心到直线的距离等于半径,即可得到方程,求出,即可得解;(2)设,,,利用圆心到直线的距离等于半径,得到,再联立直线与椭圆方程,消元列出韦达定理,利用弦长公式表示出,再根据及基本不等式求出,最后再计算直线斜率不存在时三角形的面积,即可得解;【小问1详解】解:圆,圆心为,半径;设直线,即,则,解得,所以或;【小问2详解】解:因为直线的斜率存在,设,,,即,则,所以,即,联立,消元整理得,所以,,所以所以因为,所以,当且仅当,即时取等号,所以,当轴时,取,,则,此时,所以;20、(1)(2)存在,【解析】(1)求出后可得椭圆的标准方程.(2)设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论