版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东淄博第一中学2025届高一上数学期末达标检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“是第一或第二象限角”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.已知函数与的图像关于对称,则()A.3 B.C.1 D.3.已知:,:,若是的必要不充分条件,则实数的取值范围是()A. B.C. D.4.已知,,都是实数,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.设命题,使得,则命题为的否定为()A., B.,使得C., D.,使得6.定义域为R的函数,若关于的方程恰有5个不同的实数解,则=A.0 B.C. D.17.已知函数则函数值域是()A. B.C. D.8.如图,正方形中,为的中点,若,则的值为()A. B.C. D.9.设,则A. B.C. D.10.函数的图象的横坐标和纵坐标同时扩大为原来的3倍,再将图象向右平移3个单位长度,所得图象的函数解析式为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.唐代李皋发明了“桨轮船”,这种船是原始形态的轮船,是近代明轮船航行模式之先导,如图,某桨轮船的轮子的半径为,他以的角速度逆时针旋转,轮子外边沿有一点P,点P到船底的距离是H(单位:m),轮子旋转时间为t(单位:s).当时,点P在轮子的最高处.(1)当点P第一次入水时,__________;(2)当时,___________.12.两条直线与互相垂直,则______13.给出下列四个结论函数的最大值为;已知函数且在上是减函数,则a的取值范围是;在同一坐标系中,函数与的图象关于y轴对称;在同一坐标系中,函数与的图象关于直线对称其中正确结论序号是______14.已知,函数,若函数有两个零点,则实数k的取值范围是________15.体积为8的正方体的顶点都在同一球面上,则该球面的表面积为__________.16.已知函数=,若对任意的都有成立,则实数的取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,集合.(1)求.(2)求,求的取值范围.18.设函数.(1)当时,求函数的最小值;(2)若函数的零点都在区间内,求的取值范围.19.下面给出了根据我国2012年~2018年水果人均占有量(单位:)和年份代码绘制的散点图(2012年~2018年的年份代码分别为1~7).(1)根据散点图分析与之间的相关关系;(2)根据散点图相应数据计算得,,求关于的线性回归方程.参考公式:.20.已知函数.(1)判断函数的奇偶性,并证明;(2)设函数,若对任意的,总存在使得成立,求实数m的取值范围.21.武威“天马之眼”摩天轮,于2014年5月建成运营.夜间的“天马之眼”摩天轮美轮美奂,绚丽多彩,气势宏大,震撼人心,是武威一颗耀眼的明珠.该摩天轮直径为120米,摩天轮的最高点距地面128米,摩天轮匀速转动,每转动一圈需要t分钟,若小夏同学从摩天轮的最低点处登上摩天轮,从小夏登上摩天轮的时刻开始计时(1)求小夏与地面的距离y(米)与时间x(分钟)的函数关系式;(2)在摩天轮转动一圈的过程中,小夏的高度在距地面不低于98米的时间不少分钟,求t的最小值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】利用充分必要条件的定义判断.【详解】若角的终边在第一或第二象限,则,反过来,若,则的终边可能在第一或第二象限,也有可能在轴正半轴上.所以“是第一或第二象限角”是“”的充分不必要条件.故选:A2、B【解析】根据同底的指数函数和对数函数互为反函数可解.【详解】由题知是的反函数,所以,所以.故选:B.3、C【解析】求解不等式化简集合,,再由题意可得,由此可得的取值范围【详解】解:由,即,解得或,所以或,,命题是命题的必要不充分条件,,则实数的取值范围是故选:C4、B【解析】利用充分、必要条件的定义,结合不等式的性质判断题设条件间的推出关系,即可知条件间的充分、必要关系.【详解】当时,若时不成立;当时,则必有成立,∴“”是“”的必要不充分条件.故选:B5、C【解析】根据给定条件由含有一个量词的命题的否定方法直接写出p的否定判断作答.【详解】依题意,命题是存在量词命题,其否定是全称量词命题,所以命题的否定是:,.故选:C6、C【解析】本题考查学生的推理能力、数形结合思想、函数方程思想、分类讨论等知识如图,由函数的图象可知,若关于的方程恰有5个不同的实数解,当时,方程只有一根为2;当时,方程有两不等实根(),从而方程,共有四个根,且这四个根关于直线对称分布,故其和为8.从而,,选C【点评】本题需要学生具备扎实的基本功,难度较大7、B【解析】结合分段函数的单调性来求得的值域.【详解】当吋,单调递增,值域为;当时,单调递增,值域为,故函数值域为.故选:B8、D【解析】因为E是DC的中点,所以,∴,∴,考点:平面向量的几何运算9、B【解析】因为,所以.选B10、D【解析】函数的图像的横坐标和纵坐标同时扩大为原来的3倍,所得图像的解析式为,再向右平移3个单位长度,所得图像的解析式为,选D.二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.##【解析】算出点从最高点到第一次入水的圆心角,即可求出对应时间;由题意求出关于的表达式,代值运算即可求出对应.【详解】如图所示,当第一次入水时到达点,由几何关系知,又圆的半径为3,故,此时轮子旋转的圆心角为:,故;由题可知,即,当时,.故答案为:;12、【解析】先分别求出两条直线的斜率,再利用两条直线垂直的充要条件是斜率乘积等于,即可求出结果【详解】直线的斜率,直线的斜率,且两直线与互相垂直,,,解得,故答案为【点睛】本题主要考查两直线垂直的充要条件,属于基础题.在两条直线的斜率都存在的条件下,两条直线垂直的充要条件是斜率乘积等于13、【解析】根据指数函数单调性可得二次函数的最值,求得的最小值为;根据对数函数的图象与性质,求得a的取值范围是;同一坐标系中,函数与的图象关于x轴对称;同一坐标系中,函数与的图象关于直线对称【详解】对于,函数的最大值为1,的最小值为,错误;对于,函数且在上是减函数,,解得a的取值范围是,错误;对于,在同一坐标系中,函数与的图象关于x轴对称,错误;对于,在同一坐标系中,函数与的图象关于直线对称,正确综上,正确结论的序号是故答案为【点睛】本题考查了指数函数与对数函数的性质与应用问题,是基础题14、【解析】由题意函数有两个零点可得,得,令与,作出函数与的图象如图所示:由图可知,函数有且只有两个零点,则实数的取值范围是.故答案为:.【点睛】本题考查分段函数的应用,函数零点的判断等知识,解题时要灵活应用数形结合思想15、【解析】正方体体积8,可知其边长为2,正方体的体对角线为=2,即为球的直径,所以半径为,所以球的表面积为=12π故答案为:12π点睛:设几何体底面外接圆半径为,常见的图形有正三角形,直角三角形,矩形,它们的外心可用其几何性质求;而其它不规则图形的外心,可利用正弦定理来求.若长方体长宽高分别为则其体对角线长为;长方体的外接球球心是其体对角线中点.找几何体外接球球心的一般方法:过几何体各个面的外心分别做这个面的垂线,交点即为球心.三棱锥三条侧棱两两垂直,且棱长分别为,则其外接球半径公式为:.16、【解析】转化为对任意的都有,再分类讨论求出最值,代入解不等式即可得解.【详解】因为=,所以等价于,等价于,所以对任意的都有成立,等价于,(1)当,即时,在上为减函数,,在上为减函数,,所以,解得,结合可得.(2)当,即时,在上为减函数,,在上为减函数,在上为增函数,或,所以且,解得.(3)当,即时,,在上为减函数,,在上为增函数,,所以,解得,结合可知,不合题意.(4)当,即时,在上为减函数,在上为增函数,,在上为增函数,,此时不成立.(5)当时,在上为增函数,,在上为增函数,,所以,解得,结合可知,不合题意.综上所述:.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由不等式,求得,即可求解;(2)由,得到,列出不等式组,即可求解.【小问1详解】解:由,即,可得,可得集合.【小问2详解】解:因为,且集合,又因为,即,当时,即,可得,此时满足;当时,则满足,解得,综上可得,,即实数的取值范围.18、(1);(2)【解析】(1)分类讨论得;(2)由题意,得到等价不等式,解得的取值范围是试题解析:(1)∵函数.当,即时,;当,即时,;当,即时,.综上,(2)∵函数的零点都在区间内,等价于函数的图象与轴的交点都在区间内.∴故的取值范围是19、(1)与之间是正线性相关关系(2)【解析】(1)根据散点图当由小变大时,也由小变大可判断为正线性相关关系.(2)由图中数据求出,代入样本中心点求出,即可求出关于的线性回归方程.【详解】(1)由散点图可以看出,点大致分布在某一直线的附近,且当由小变大时,也由小变大,从而与之间是正线性相关关系;(2)由题中数据可得,,从而,,从而所求关于的线性回归方程为.【点睛】本题考查了线性回归方程的求法以及变量之间的关系,属于基础题.20、(1)偶函数,证明见解析(2)【解析】(1)为偶函数,利用偶函数定义证明即可;(2)转化为,利用均值不等式可求解的最大值,利用一次函数性质求解的最大值,分析即得解.【小问1详解】为偶函数证明:,故,解得的定义域为,关于原点对称,为偶函数【小问2详解】若对任意的,总存在,使得成立则又,当且仅当,即取等号所以所求实数m的取值范围为21、(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论