版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东师大附属中高三下学期第十四次周考数学试题(A)试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在直三棱柱中,己知,,,则异面直线与所成的角为()A. B. C. D.2.若,满足约束条件,则的取值范围为()A. B. C. D.3.为得到函数的图像,只需将函数的图像()A.向右平移个长度单位 B.向右平移个长度单位C.向左平移个长度单位 D.向左平移个长度单位4.过抛物线的焦点的直线交该抛物线于,两点,为坐标原点.若,则直线的斜率为()A. B. C. D.5.已知随机变量X的分布列如下表:X01Pabc其中a,b,.若X的方差对所有都成立,则()A. B. C. D.6.用电脑每次可以从区间内自动生成一个实数,且每次生成每个实数都是等可能性的.若用该电脑连续生成3个实数,则这3个实数都小于的概率为()A. B. C. D.7.已知双曲线的一条渐近线方程为,,分别是双曲线C的左、右焦点,点P在双曲线C上,且,则()A.9 B.5 C.2或9 D.1或58.五名志愿者到三个不同的单位去进行帮扶,每个单位至少一人,则甲、乙两人不在同一个单位的概率为()A. B. C. D.9.的图象如图所示,,若将的图象向左平移个单位长度后所得图象与的图象重合,则可取的值的是()A. B. C. D.10.的内角的对边分别为,若,则内角()A. B. C. D.11.函数的图象大致是()A. B.C. D.12.已知,为两条不同直线,,,为三个不同平面,下列命题:①若,,则;②若,,则;③若,,则;④若,,则.其中正确命题序号为()A.②③ B.②③④ C.①④ D.①②③二、填空题:本题共4小题,每小题5分,共20分。13.已知数列为等比数列,,则_____.14.已知数列{an}的前n项和为Sn,向量(4,﹣n),(Sn,n+3).若⊥,则数列{}前2020项和为_____15.点到直线的距离为________16.设常数,如果的二项展开式中项的系数为-80,那么______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知关于的不等式有解.(1)求实数的最大值;(2)若,,均为正实数,且满足.证明:.18.(12分)设等差数列的首项为0,公差为a,;等差数列的首项为0,公差为b,.由数列和构造数表M,与数表;记数表M中位于第i行第j列的元素为,其中,(i,j=1,2,3,…).记数表中位于第i行第j列的元素为,其中(,,).如:,.(1)设,,请计算,,;(2)设,,试求,的表达式(用i,j表示),并证明:对于整数t,若t不属于数表M,则t属于数表;(3)设,,对于整数t,t不属于数表M,求t的最大值.19.(12分)已知函数(),且只有一个零点.(1)求实数a的值;(2)若,且,证明:.20.(12分)已知抛物线的焦点为,准线与轴交于点,点在抛物线上,直线与抛物线交于另一点.(1)设直线,的斜率分别为,,求证:常数;(2)①设的内切圆圆心为的半径为,试用表示点的横坐标;②当的内切圆的面积为时,求直线的方程.21.(12分)已知函数.(1)求不等式的解集;(2)若不等式对恒成立,求实数的取值范围.22.(10分)已知函数.(1)若,求函数的单调区间;(2)若恒成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
由条件可看出,则为异面直线与所成的角,可证得三角形中,,解得从而得出异面直线与所成的角.【详解】连接,,如图:又,则为异面直线与所成的角.因为且三棱柱为直三棱柱,∴∴面,∴,又,,∴,∴,解得.故选C【点睛】考查直三棱柱的定义,线面垂直的性质,考查了异面直线所成角的概念及求法,考查了逻辑推理能力,属于基础题.2、B【解析】
根据约束条件作出可行域,找到使直线的截距取最值得点,相应坐标代入即可求得取值范围.【详解】画出可行域,如图所示:由图可知,当直线经过点时,取得最小值-5;经过点时,取得最大值5,故.故选:B【点睛】本题考查根据线性规划求范围,属于基础题.3、D【解析】,所以要的函数的图象,只需将函数的图象向左平移个长度单位得到,故选D4、D【解析】
根据抛物线的定义,结合,求出的坐标,然后求出的斜率即可.【详解】解:抛物线的焦点,准线方程为,设,则,故,此时,即.则直线的斜率.故选:D.【点睛】本题考查了抛物线的定义,直线斜率公式,属于中档题.5、D【解析】
根据X的分布列列式求出期望,方差,再利用将方差变形为,从而可以利用二次函数的性质求出其最大值为,进而得出结论.【详解】由X的分布列可得X的期望为,又,所以X的方差,因为,所以当且仅当时,取最大值,又对所有成立,所以,解得,故选:D.【点睛】本题综合考查了随机变量的期望、方差的求法,结合了概率、二次函数等相关知识,需要学生具备一定的计算能力,属于中档题.6、C【解析】
由几何概型的概率计算,知每次生成一个实数小于1的概率为,结合独立事件发生的概率计算即可.【详解】∵每次生成一个实数小于1的概率为.∴这3个实数都小于1的概率为.故选:C.【点睛】本题考查独立事件同时发生的概率,考查学生基本的计算能力,是一道容易题.7、B【解析】
根据渐近线方程求得,再利用双曲线定义即可求得.【详解】由于,所以,又且,故选:B.【点睛】本题考查由渐近线方程求双曲线方程,涉及双曲线的定义,属基础题.8、D【解析】
三个单位的人数可能为2,2,1或3,1,1,求出甲、乙两人在同一个单位的概率,利用互为对立事件的概率和为1即可解决.【详解】由题意,三个单位的人数可能为2,2,1或3,1,1;基本事件总数有种,若为第一种情况,且甲、乙两人在同一个单位,共有种情况;若为第二种情况,且甲、乙两人在同一个单位,共有种,故甲、乙两人在同一个单位的概率为,故甲、乙两人不在同一个单位的概率为.故选:D.【点睛】本题考查古典概型的概率公式的计算,涉及到排列与组合的应用,在正面情况较多时,可以先求其对立事件,即甲、乙两人在同一个单位的概率,本题有一定难度.9、B【解析】
根据图象求得函数的解析式,即可得出函数的解析式,然后求出变换后的函数解析式,结合题意可得出关于的等式,即可得出结果.【详解】由图象可得,函数的最小正周期为,,,则,,取,,则,,,可得,当时,.故选:B.【点睛】本题考查利用图象求函数解析式,同时也考查了利用函数图象变换求参数,考查计算能力,属于中等题.10、C【解析】
由正弦定理化边为角,由三角函数恒等变换可得.【详解】∵,由正弦定理可得,∴,三角形中,∴,∴.故选:C.【点睛】本题考查正弦定理,考查两角和的正弦公式和诱导公式,掌握正弦定理的边角互化是解题关键.11、C【解析】
根据函数奇偶性可排除AB选项;结合特殊值,即可排除D选项.【详解】∵,,∴函数为奇函数,∴排除选项A,B;又∵当时,,故选:C.【点睛】本题考查了依据函数解析式选择函数图象,注意奇偶性及特殊值的用法,属于基础题.12、C【解析】
根据直线与平面,平面与平面的位置关系进行判断即可.【详解】根据面面平行的性质以及判定定理可得,若,,则,故①正确;若,,平面可能相交,故②错误;若,,则可能平行,故③错误;由线面垂直的性质可得,④正确;故选:C【点睛】本题主要考查了判断直线与平面,平面与平面的位置关系,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、81【解析】
设数列的公比为,利用等比数列通项公式求出,代入等比数列通项公式即可求解.【详解】设数列的公比为,由题意知,因为,由等比数列通项公式可得,,解得,由等比数列通项公式可得,.故答案为:【点睛】本题考查等比数列通项公式;考查运算求解能力;属于基础题.14、【解析】
由已知可得•4Sn﹣n(n+3)=0,可得Sn,n=1时,a1=S1=1.当n≥2时,an=Sn﹣Sn﹣1.可得:2().利用裂项求和方法即可得出.【详解】∵⊥,∴•4Sn﹣n(n+3)=0,∴Sn,n=1时,a1=S1=1.当n≥2时,an=Sn﹣Sn﹣1.,满足上式,.∴2().∴数列{}前2020项和为2(1)=2(1).故答案为:.【点睛】本题考查了向量垂直与数量积的关系、数列递推关系、裂项求和方法,考查了推理能力与计算能力,属于中档题.15、2【解析】
直接根据点到直线的距离公式即可求出。【详解】依据点到直线的距离公式,点到直线的距离为。【点睛】本题主要考查点到直线的距离公式的应用。16、【解析】
利用二项式定理的通项公式即可得出.【详解】的二项展开式的通项公式:,令,解得.∴,解得.故答案为:-2.【点睛】本小题主要考查根据二项式展开式的系数求参数,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析【解析】
(1)由题意,只需找到的最大值即可;(2),构造并利用基本不等式可得,即.【详解】(1),∴的最大值为4.关于的不等式有解等价于,(ⅰ)当时,上述不等式转化为,解得,(ⅱ)当时,上述不等式转化为,解得,综上所述,实数的取值范围为,则实数的最大值为3,即.(2)证明:根据(1)求解知,所以,又∵,,,,,当且仅当时,等号成立,即,∴,所以,.【点睛】本题考查绝对值不等式中的能成立问题以及综合法证明不等式问题,是一道中档题.18、(1)(2)详见解析(3)29【解析】
(1)将,代入,可求出,,可代入求,,可求结果.(2)可求,,通过反证法证明,(3)可推出,,的最大值,就是集合中元素的最大值,求出.【详解】(1)由题意知等差数列的通项公式为:;等差数列的通项公式为:,得,则,,得,故.(2)证明:已知.,由题意知等差数列的通项公式为:;等差数列的通项公式为:,得,,.得,,,.所以若,则存在,,使,若,则存在,,,使,因此,对于正整数,考虑集合,,,即,,,,,,.下面证明:集合中至少有一元素是7的倍数.反证法:假设集合中任何一个元素,都不是7的倍数,则集合中每一元素关于7的余数可以为1,2,3,4,5,6,又因为集合中共有7个元素,所以集合中至少存在两个元素关于7的余数相同,不妨设为,,其中,,.则这两个元素的差为7的倍数,即,所以,与矛盾,所以假设不成立,即原命题成立.即集合中至少有一元素是7的倍数,不妨设该元素为,,,则存在,使,,,即,,,由已证可知,若,则存在,,使,而,所以为负整数,设,则,且,,,,所以,当,时,对于整数,若,则成立.(3)下面用反证法证明:若对于整数,,则,假设命题不成立,即,且.则对于整数,存在,,,,,使成立,整理,得,又因为,,所以且是7的倍数,因为,,所以,所以矛盾,即假设不成立.所以对于整数,若,则,又由第二问,对于整数,则,所以的最大值,就是集合中元素的最大值,又因为,,,,所以.【点睛】本题考查数列的综合应用,以及反证法,求最值,属于难题.19、(1)(2)证明见解析【解析】
(1)求导可得在上,在上,所以函数在时,取最小值,由函数只有一个零点,观察可知则有,即可求得结果.(2)由(1)可知为最小值,则构造函数(),求导借助基本不等式可判断为减函数,即可得,即则有,由已知可得,由,可知,因为时,为增函数,即可得证得结论.【详解】(1)().因为,所以,令得,,且,,在上;在上;所以函数在时,取最小值,当最小值为0时,函数只有一个零点,易得,所以,解得.(2)由(1)得,函数,设(),则,设(),则,,所以为减函数,所以,即,所以,即,又,所以,又当时,为增函数,所以,即.【点睛】本题考查借助导数研究函数的单调性及最值,考查学生分析问题的能力,及逻辑推理能力,难度困难.20、(1)证明见解析;(2)①;②.【解析】
(1)设过的直线交抛物线于,,联立,利用直线的斜率公式和韦达定理表示出,化简即可;(2)由(1)知点在轴上,故,设出直线方程,求出交点坐标,因为内心到三角形各边的距离相等且均为内切圆半径,列出方程组求解即可.【详解】(1)设过的直线交抛物线于,,联立方程组,得:.于是,有:,又,;(2)①由(1)知点在轴上,故,联立的直线方程:.,又点在抛物线上,得,又,;②由题得,(解法一)所以直线的方程为(解法二)设内切圆半径为,则.设直线的斜率为,则:直线的方程为:代入直线的直线方程,可得于是有:得,又由(1)可设内切圆的圆心为则,即:,解得:所以,直线的方程为:.【点睛】本题主要考查了抛物线的性质,直线与抛物线相关的综合问题的求解,考查了学生的运算求解与逻辑推理能力.21、(1)(2)【解析】
(1)按绝对值的定义分类讨论去绝对值符号后解不等式;(2)不等式转化为,求出在上的最小值即可,利用绝对值定义分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024月子中心产后康复与美容护肤服务合同范本3篇
- 2025年桉树苗木绿色种植与可持续发展合同2篇
- 2024无人机买卖合同协议
- 专业委托经营协作合同(2024年版)版B版
- 2024外墙涂料施工质量责任保险合同范本3篇
- 专业劳务分包协议范本(2024)版B版
- 2025年金融科技参股合作合同书样本2篇
- 2024年度新能源汽车充电设施投资建设合同3篇
- 2024年网络游戏虚拟物品销售合同
- 2024文艺巡回演出项目风险管理与服务保障合同3篇
- 全国教育科学规划课题申报书:34.《高质量数字教材建设研究》
- 高处作业风险及隐患排查(安全检查)清单
- 五年级口算1000题(打印版)
- 团意险项目招标书
- 城市轨道-城轨交通车辆制动系统故障与检修
- (郭伯良)儿童青少年同伴关系评级量表
- 烟道加强肋计算书(样本)
- 登高平台梯安全操作保养规程
- 土力学与地基基础(课件)
- ERP沙盘模拟经营实训报告
- 人伤理赔专业试卷
评论
0/150
提交评论