版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基本不等式
我们都知道,把一个物体放在天平的一个盘子上,在另一个盘子上放砝码使天平平衡,可称得物体的质量为.
如果是一架臂长不同(其他因素不计)的天平,那么
并非物体的实际质量.
问题1.怎样用两臂长不同的天平称物体的质量?
你同意吗?问题1.怎样用两臂长不同的天平称物体的质量?取平均值:
问题1.怎样用两臂长不同的天平称物体的质量?
问题1.怎样用两臂长不同的天平称物体的质量?
问题1.怎样用两臂长不同的天平称物体的质量?
问题1.怎样用两臂长不同的天平称物体的质量?
问题1.怎样用两臂长不同的天平称物体的质量?
问题1.怎样用两臂长不同的天平称物体的质量?平均值
是大了还是小了呢?问题2.与
的大小关系?因为
,所以得(当且仅当
时,等号成立).因为
,所以即如果
是正数,那么(当且仅当
时,等号成立).证明:(当且仅当
时,等号成立).比较法:作差后,判断正负.如果
是正数,那么(当且仅当
时,等号成立).证法2:对于正数
,要证
,只要证
,只要证
,只要证.因为最后一个不等式成立,所以
成立,当且仅当
时,等号成立.分析法:是从结论出发,分析确定不等式成立的条件,是“执果索因”的一种证明思路.如果
是正数,那么(当且仅当
时,等号成立).证法3:对于正数
,有当且仅当
时,等号成立.综合法:是从条件出发进行综合推理,是“由因导果”的证明思路.如果
是正数,那么(当且仅当
时,等号成立).当
时,不等式仍然成立.基本不等式:算术平均数:几何平均数:两个正数的几何平均数不大于算术平均数对于正数
,问题3.设
为正数,证明下列不等式成立:证明:(1)因为
为正数,所以
也为正数.由基本不等式,得当且仅当
,即
时,取得等号.所以原不等式成立.问题3.设
为正数,证明下列不等式成立:证明:(2)因为
为正数,所以
也为正数.由基本不等式,得当且仅当
,即
时,取得等号.所以原不等式成立.所以问题4.设
,
,求
的最小值.由基本不等式,得因为
,所以.当且仅当
,即
时,等号成立.因此,当
时,
的最小值为6.基本不等式
可以求函数的最值:一正二定三相等.解:回顾反思:实际问题三种证明方法:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 居间合同国家收费标准
- 泥工合同中的违约责任-2024年版
- 设备拆除安全合同范本
- 2024版工厂人力资源外包合同2篇
- 监理合同模板
- 二零二四年度股权转让合同范本中股权转让的具体规定3篇
- 银行贷款合同电子版
- 情侣绝交协议书
- 工程承包合同协议书
- 员工宿舍房屋租赁合同模板
- 五年级数学下册 第一单元观察物体(三)检测卷(拓展卷)(含答案)(人教版)
- 2024年合同法下反担保条款解读
- 2024年全国普法知识考试题库及答案
- 国开《液压传动和气压传动》实验报告1-4
- GB/T 7247.1-2024激光产品的安全第1部分:设备分类和要求
- 绵阳市高中2022级(2025届)高三第一次诊断性考试(一诊)历史试卷
- 湖南省湘东十校联盟2024-2025学年高三上学期10月联考英语试卷 含答案
- 东方电影学习通超星期末考试答案章节答案2024年
- (新版)装订技能竞赛理论知识考试题库500题(含答案)
- 部编版道德与法治八年级上册8.2坚持国家利益至上(2)教案
- 生物尝试对生物进行分类课件 2024-2025学年人教版生物七年级上册
评论
0/150
提交评论