版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
11.3多边形及其内角和多边形的概念1.定义:在平面内不在同一直线上的一些线段首尾顺次相接所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形.注意:(1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可;(2)过n边形的一个顶点可以引(n3)条对角线,n边形对角线的条数为;(3)过n边形的一个顶点的对角线可以把n边形分成(n2)个三角形.题型1:多边形的概念辨析1.下列说法中,①三角形的内角中最多有一个钝角;②三角形的中线将三角形分成面积相等的两部分;③从n边形的一个顶点可以引(n3)条对角线,把n边形分成(n2)个三角形,因此,n边形的内角和是(n2)•180°;④六边形的对角线有7条,正确的个数有()A.4个 B.3个 C.2个 D.1个【变式11】下列说法正确的是()A.五条长度相等的线段首尾顺次相接所构成的图形是正五边形B.正六边形各内角都相等,所以各内角都相等的六边形是正六边形C.从n边形的一个顶点出发可以引(n2)条对角线D.n边形共有n(n−3)2题型2:多边形的不稳定性2.四边形没有稳定性,当一个四边形的形状发生改变时,发生变化的是()A.四边形的外角和 B.四边形的边长C.四边形的周长 D.四边形某些角的大小【变式21】三角形具有稳定性,所以要使如图所示的五边形木架不变形,至少要使钉上()根木条A.1 B.2 C.3 D.4【变式22】要使一个六边形的木架稳定,至少要钉()根木条A.3 B.4 C.6 D.9题型3:多边形的对角线3.分别画出下列各多边形的对角线,并观察图形完成下列问题:(1)试写出用n边形的边数n表示对角线总条数S的式子:.(2)从十五边形的一个顶点可以引出条对角线,十五边形共有条对角线:(3)如果一个多边形对角线的条数与它的边数相等,求这个多边形的边数.【变式31】五边形共有条对角线.【变式32】已知多边形的边数恰好是从这个多边形的一个顶点出发的对角线条数的2倍,求此多边形的边数.【变式33】连接四边形任意不相邻的两个顶点的线段叫做四边形的对角线,如图:
从四边形的一个顶点可以引出
1
条对角线,把四边形分成
2
个三角形;
从五边形的一个顶点可以引出
2
条对角线,把五边形分成
3
个三角形;
从六边形的一个顶点可以引出
3
条对角线,把六边形分成
4个三角形;
…
从n边形的一个顶点可以引出条对角线,把n边形分成个三角形;已知任意三角形的内角和为180°,则:
四边形的内角和为:180°×2
五边形的内角和为:180°×3
六边形的内角和为:180°×4
…
n边形的内角和为:(用含n的代数式表示)
根据上面你所找到的规律尝试计算十二边形的内角和.多边形内角和n边形的内角和为(n2)·180°(n≥3).注意:(1)内角和公式的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;(2)正多边形的每个内角都相等,都等于;题型4:已知边数求内角和4.七边形内角和的度数是.题型5:已知内角和求边数5.已知一个n边形的内角和等于1800°,则n=()A.6 B.8 C.10 D.12【变式51】一个n边形的内角和是900°,求n的值及这个多边形对角线的条数.【变式52】一个多边形的内角和是1260°,求这个多边形的边数。题型6:正多边形的概念6.下列图形为正多边形的是()A. B. C. D.【变式61】一个正多边形的每一个内角为140°,求它的边数。题型7:求正n多边形内角的度数7.一个正多边形的内角和是1440°,则此多边形的边数是.【变式71】如果一个正多边形的内角和为1260°,那么这个正多边形的每一个内角为度.【变式72】若从一个正多边形的一个顶点出发,最多可以引5条对角线,则它的一个内角为()A.1080° B.720° C.140° D.135°题型8:已知内角和求正n多边形边数8已知一个正多边形的每个内角是150∘,则这个正多边形是()A.正八边形 B.正十边形 C.正十二边形 D.正十四边形【变式81】.一个正多边形的边长为2,每个内角为135°,则这个多边形的周长是()A.8 B.14 C.16 D.20【变式82】已知一个正多边形的内角是144°,则这个正多边形是边形.题型9:截角问题9.一个四边形,截一刀后得到新多边形的内角和将()A.增加180° B.减少180°C.不变 D.以上三种情况都有可能【变式91】将一个多边形纸片沿一条直线剪下一个三角形后,变成一个六边形,则原多边形纸片的边数不可能是()A.5 B.6 C.7 D.8【变式92】把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是()A.16 B.17 C.18 D.19【变式93】一个四边形,截一刀后得到的新多边形的内角和最多为.多边形的外角和多边形的外角和为360°.注意:(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n边形的外角和恒等于360°,它与边数的多少无关;(2)正n边形的每个内角都相等,所以它的每个外角都相等,都等于;(3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.题型10:多边形的外角和10.下列图形中,内角和等于外角和的是()A. B.C. D.【变式101】八边形的外角和是()A.180° B.360° C.540° D.720°【变式102】一正多边形的内角和与外角和的和是1440°,则该正多边形是()A.正六边形 B.正七边形 C.正八边形 D.正九边形题型11:多边形内角和和外角和实际应用11.八年级一班的同学体育课上玩游戏,让小聪同学从A出发前进10米后左转30°,再前进10米后左转30°,按照这样方法一直走下去,当他回到A时,共走了()A.60米 B.100米 C.120米 D.150米【变式111】如图,桐桐从A点出发,前进3m到点B处后向右转20°,再前进3m到点C处后又向右转20°,…,这样一直走下去,她第一次回到出发点A时,一共走了()A.100m B.90m C.54m D.60m【变式112】科技馆为某机器人编制了一个程序,如果机器人在平地上按照图中所示的步骤行走,那么该机器人所走的总路程为()A.12米 B.16米 C.18米 D.20米题型12:多边形内角和和外角和综合应用12.已知一个多边形的内角和与外角和的和为1980°,这个多边形的边数为()A.9 B.10 C.11 D.12【变式121】已知一个多边形的内角和等于外角和的2倍,求这个多边形的边数.【变式122】一个正多边形的每一个内角比每一个外角的5倍还小60°,求这个正多边形的边数及内角和.题型13:多边形内角和和外角和平行线13.如图,五边形ABCDE中,AE∥CD,∠A=107°,∠B=121°,求∠C的度数。【变式131】如图,五边形ABCDE中,AE∥BC,则∠C+∠D+∠E的度数为()A.180° B.270° C.360° D.450°【变式132】如图1,四边形ABCD中,AD∥BC,DE平分∠ADB,∠BDC=∠BCD,(1)求证:∠DEC+∠DCE=90°;(2)如图2,若∠ABD的平分线与CD的延长线交于F,且∠F=58°,求∠ABC.题型14:多边形内角和和外角和角平分线14.如图,在六边形ABCDEF中,若∠A+∠B+∠C+∠D=500°,∠DEF与∠AFE的平分线交于点G,则∠G等于()A.55° B.65° C.70° D.80°【变式141】如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC交CD于E,DF平分∠ADC交AB于F.(1)若∠ABC=60°,则∠ADC=°,∠AFD=°;(2)求证:BE∥DF.【变式142】(1)(问题引入)如图1,△ABC,点O是∠ABC和∠ACB相邻的外角平分线的交点,若∠A=40°,请求出∠BOC的度数.(2)(深入探究)如图2,在四边形ABDC中,点O是∠BAC和∠ACD的角平分线的交点,若∠B+∠D=110°,请求出∠AOC的度数.(3)(类比猜想)如图3,在△ABC中,∠CBO=13∠DBC,∠BCO=13∠ECB,∠A=α,则∠BOC=(4)如果BO,CO分别是△ABC的外角∠DBC,∠ECB的n等分线,它们交于点O,∠CBO=∠1nDBC∠BCO=1n∠ECB,则∠BOC=一、单选题1.已知一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数是()A.3 B.4 C.5 D.62.游戏中有数学智慧,找起点游戏规定:从起点走五段相等直路之后回到起点,要求每走完一段直路后向右边偏行.成功的招数不止一招,可助我们成功的一招是().A.每走完一段直路后沿向右偏72°方向行走B.每段直路要短C.每走完一段直路后沿向右偏108°方向行走D.每段直路要长3.一个五边形的内角和为()A.540° B.450° C.360° D.180°4.一个多边形的每个外角都是36°,则该多边形的内角和为()A.900° B.1800° C.1440° D.1080°5.如果从一个n边形的一个顶点出发,最多能引出6条对角线,那么这个n边形的内角和是()A.720° B.1080° C.1260° D.1440°6.过多边形一个顶点的所有对角线把这个多边形分成了7个三角形,则这个多边形的边数是()A.8 B.9 C.10 D.117.已知正多边形的一个内角等于一个外角的3倍,那么这个正多边形的边数为()A.6 B.7 C.8 D.9二、填空题8.一个n边形的内角和是720°,那么n=.9.一个多边形的内角和为1080°,则这个多边形是边形.10.如图,五边形ABCDE是正五边形,点D在l2上,若l1/
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 重庆人文科技学院《美术创作指导与实践》2023-2024学年第一学期期末试卷
- 重庆人文科技学院《课堂教学技能训练》2022-2023学年第一学期期末试卷
- DELPHI开发程序员岗位职责
- 重庆财经学院《进出口报关实务》2022-2023学年第一学期期末试卷
- 重庆财经学院《高级框架开发》2023-2024学年期末试卷
- 重庆财经学院《电子编辑与排版》2022-2023学年期末试卷
- 禅茶活动策划方案
- 仲恺农业工程学院《中国特色美食文化鉴赏》2023-2024学年第一学期期末试卷
- 白灰车间检修安全施工方案
- 炒栗子机课程设计
- 2024年教师资格考试高级中学面试语文试题及解答参考
- 译林新版(2024)七年级英语上册Unit 5 Grammar 课件
- 关于健康的课件图片
- 2024年度上海市高校教师资格证之高等教育心理学题库与答案
- 第三章+相互作用-力+大单元教学设计 高一上学期物理人教版(2019)必修第一册
- 中国航空协会:2024低空经济场景白皮书
- 体育赛事组织服务协议
- 适合全院护士讲课
- 2024年医学高级职称-全科医学(医学高级)考试近5年真题集锦(频考类试题)带答案
- 2024年全国半导体行业职业技能竞赛(智能硬件装调员赛项)理论考试题库(含答案)
- 自然科学基金项目申报书(模板)
评论
0/150
提交评论