版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省雅礼中学2025届数学高一上期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,,则()A. B.C. D.2.已知,,,则a,b,c的大小关系是A. B.C. D.3.若函数的图像向左平移个单位得到的图像,则A. B.C. D.4.已知为正实数,且,则的最小值为()A.4 B.7C.9 D.115.下列命题正确的是A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行6.垂直于直线且与圆相切的直线的方程是AB.C.D.7.函数且的图象恒过定点()A.(-2,0) B.(-1,0)C.(0,-1) D.(-1,-2)8.已知a=20.1,b=log43.6,c=log30.3,则()A.a>b>c B.b>a>cC.a>c>b D.c>a>b9.已知,都是正数,则下列命题为真命题的是()A.如果积等于定值,那么当时,和有最大值B.如果和等于定值,那么当时,积有最小值C.如果积等于定值,那么当时,和有最小值D.如果和等于定值,那么当时,积有最大值10.下列函数在定义域内单调递增的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数和函数的图像相交于三点,则的面积为__________.12.若点位于第三象限,那么角终边落在第___象限13.若圆上有且仅有两个点到直线的距离等于1,则半径R的取值范围是_____14.函数是幂函数,且在上是减函数,则实数__________.15.函数的零点为______16.已知是定义在上的奇函数,当时,,则时,__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,.(1)若与共线且方向相反,求向量的坐标.(2)若与垂直,求向量,夹角的大小.18.已知函数(1)求函数的最值及相应的的值;(2)若函数在上单调递增,求的取值范围19.已知函数,若区间上有最大值5,最小值2.(1)求的值(2)若,在上单调,求的取值范围.20.我国所需的高端芯片很大程度依赖于国外进口,“缺芯之痛”关乎产业安全、国家经济安全.如今,我国科技企业正在芯片自主研发之路中不断崛起.根据市场调查某手机品牌公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元.设该公司一年内共生产该款手机万部并全部销售完,每万部的销售收入为万美元,且当该公司一年内共生产该款手机2万部并全部销售完时,年利润为704万美元.(1)写出年利润(万美元)关于年产量(万部)的函数解析式:(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.21.已知函数(1)当时,函数恒有意义,求实数的取值范围;(2)是否存在这样的实数,使得函数在区间上为减函数,并且最大值为1?如果存在,试求出的值;如果不存在,请说明理由
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】分析】由指数函数和对数函数单调性,结合临界值可确定大小关系.【详解】,.故选:B.2、A【解析】根据对数函数的性质,确定的范围,即可得出结果.【详解】因为单调递增,所以,又,所以.故选A【点睛】本题主要考查对数的性质,熟记对数的性质,即可比较大小,属于基础题型.3、A【解析】函数的图象向左平移个单位,得到的图象对应的函数为:本题选择A选项.4、C【解析】由,展开后利用基本不等式求最值【详解】且,∴,当且仅当,即时,等号成立∴的最小值为9故选:C5、C【解析】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确.[点评]本题旨在考查立体几何的线、面位置关系及线面的判定和性质,需要熟练掌握课本基础知识的定义、定理及公式.6、B【解析】设所求直线方程为3x+y+c=0,则d=,解得d=±10.所以所求直线方程为3x+y+10=0或3x+y-10=0.7、A【解析】根据指数函数的图象恒过定点,即求得的图象所过的定点,得到答案【详解】由题意,函数且,令,解得,,的图象过定点故选:A8、A【解析】直接判断范围,比较大小即可.【详解】,,,故a>b>c.故选:A.9、D【解析】根据基本不等式计算求出和的最小值与积的最大值,进而依次判断选项即可.【详解】由题意知,,A:,则,当且仅当时取到等号,所以有最小值,故A错误;B:,则,当且仅当时取到等号,所以有最大值,故B错误;C:,则,当且仅当时取到等号,所以有最小值,故C错误;D:,则,有,当且仅当时取到等号,所以有最大值,故D正确;故选:D10、D【解析】根据题意,依次分析选项中函数的单调性,综合即可得答案详解】解:根据题意,依次分析选项:对于A,,是二次函数,在其定义域上不是单调函数,不符合题意;对于B,,是正切函数,在其定义域上不是单调函数,不符合题意;对于C,,是指数函数,在定义域内单调递减,不符合题意;对于D,,是对数函数,在定义域内单调递增,符合题意;故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】解出三点坐标,即可求得三角形面积.【详解】由题:,,所以,,所以,.故答案为:12、四【解析】根据所给的点在第三象限,写出这个点的横标和纵标都小于0,根据这两个都小于0,得到角的正弦值小于0,余弦值大于0,得到角是第四象限的角【详解】解:∵点位于第三象限,∴sinθcosθ<02sinθ<0,∴sinθ<0,Cosθ>0∴θ是第四象限的角故答案为四【点睛】本题考查三角函数的符号,这是一个常用到的知识点,给出角的范围要求说出三角函数的符号,反过来给出三角函数的符号要求看出角的范围13、【解析】根据题意分析出直线与圆的位置关系,再求半径的范围.【详解】圆心到直线的距离为2,又圆(x﹣1)2+(y+1)2=R2上有且仅有两个点到直线4x+3y=11的距离等于1,满足,即:|R﹣2|<1,解得1<R<3故半径R的取值范围是1<R<3(画图)故答案为:【点睛】本题考查直线与圆的位置关系,考查数形结合的思想,属于中档题.14、2【解析】根据函数为幂函数求参数m,讨论所求得的m判断函数是否在上是减函数,即可确定m值.【详解】由题设,,即,解得或,当时,,此时函数在上递增,不合题意;当时,,此时函数在上递减,符合题设.综上,.故答案为:215、1和【解析】由,解得的值,即可得结果【详解】因为,若,则,即,整理得:可解得:或,即函数的零点为1和,故答案为1和.【点睛】本题主要考查函数零点的计算,意在考查对基础知识的理解与应用,属于基础题16、【解析】∵函数f(x)为奇函数∴f(-x)=-f(x)∵当x>0时,f(x)=log2x∴当x<0时,f(x)=-f(-x)=-log2(-x).故答案为.点睛:本题根据函数为奇函数可推断出f(-x)=-f(x)进而根据x>0时函数的解析式即可求得x<0时,函数的解析式三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由已知设,.再由向量的模的表示可求得答案;(2)根据向量垂直的坐标表示可求得,再由向量的夹角运算求得答案..,.【详解】(1),且与共线且方向相反.设,.,,..(2)与垂直,,,,.,.18、(1)当时,,当时,;(2)【解析】(1)化简得,再求三角函数的最值得解;(2)先求出函数的单调增区间为,可得在单调递增,即得解.【详解】(1)∵,当时,,,当时,,(2)因为,则,解得,令,得,可得在单调递增,若上单调递增,则,所以的取值范围是【点睛】关键点睛:解答第二问的关键求出函数在单调递增,即得到.19、(1)或;(2).【解析】(1)分和两种情况讨论,根据单调性的不同分别代入求值即可;(2)易知也为二次函数,若要在区间上单调,则对称轴在区间外即可.【详解】(1)由可得二次函数的对称轴为,①当时,在上为增函数,可得,所以,当时,在上为减函数,可得,解得;(2)即,在上单调,或即或,故的取值范围为.20、(1);(2)32万部,最大值为6104万美元.【解析】(1)先由生产该款手机2万部并全部销售完时,年利润为704万美元,解得,然后由,将代入即可.(2)当时利用二次函数的性质求解;当时,利用基本不等式求解,综上对比得到结论.【详解】(1)因为生产该款手机2万部并全部销售完时,年利润为704万美元.所以,解得,当时,,当时,.所以(2)①当时,,所以;②当时,,由于,当且仅当,即时,取等号,所以此时的最大值为5760.综合①②知,当,取得最大值为6104万美元.【点睛】思路点睛:应用题的基本解题步骤:(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值;(2)设变量时一般要把求最大值或最小值的变量定义为函数;(3)解应用题时,要注意变量的实际意义及其取值范围;(4)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解21、(1);(2)不存在,理由见解析【解析】(1)结合题意得到关于实数的不等式组,求解不等式,即可求解,得到答案;(2)由题意结合对数函数的图象与性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 顶管施工工艺流程
- 2025至2030年中国营养洗面奶行业投资前景及策略咨询研究报告
- 农业机械化旋耕施工组织方案
- 2024年中国钢栅防盗安全门市场调查研究报告
- 2024年中国珍珠钳市场调查研究报告
- 2021-2026年中国促性腺激素行业市场全景调研及投资规划建议报告
- 2018-2024年中国黄板纸市场深度评估及投资方向研究报告
- 外墙砖施工质量控制方案
- 2022-2027年中国普鲁兰多糖行业发展监测及投资战略研究报告
- 2024至2030年矿金水项目投资价值分析报告
- 【MOOC】公司金融-江西财经大学 中国大学慕课MOOC答案
- 2024新人教版英语七年级上单词默写表(小学部分)
- 世界卫生组织人类精液及精子-宫颈粘液相互作用实验室检验手册第五版
- 殡仪馆鲜花采购投标方案(技术方案)
- 招商会会议流程纲要
- 安全生产工作年终总结
- 2024-2025学年人教版七年级英语上册各单元重点句子
- 消化道大出血应急预案演练
- 光伏项目达标投产实施细则-施工
- 信息技术行业数据安全HSE方案
- 中国的世界文化遗产-英文版
评论
0/150
提交评论