版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江西省南昌二中、九江一中、新余一中、临川一中八所重点中学高一数学第一学期期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的定义城为()A B.C. D.2.今有一组实验数据如下:x23456y1.52.012.985.028.98现准备用下列函数中的一个近似地表示这些数据所满足的规律,其中最接近的一个是()A. B.C. D.3.北京2022年冬奥会新增了女子单人雪车、短道速滑混合团体接力、跳台滑雪混合团体、男子自由式滑雪大跳台、女子自由式滑雪大跳台、自由式滑雪空中技巧混合团体和单板滑雪障碍追逐混合团体等7个比赛小项,现有甲、乙两名志愿者分别从7个比赛小项中各任选一项参加志愿服务工作,且甲、乙两人的选择互不影响,那么甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作的概率是()A.249 B.C.17 D.4.若关于的不等式的解集为,则函数在区间上的最小值为()A. B.C. D.5.设集合,则()A. B.C. D.6.定义在上的偶函数在时为增函数,若实数满足,则的取值范围是A. B.C. D.7.下列函数中,既是奇函数,又在区间上单调递增的是()A. B.C D.8.函数的单调减区间为()A. B.C. D.9.下列函数中是增函数的为()A. B.C. D.10.已知直二面角,点,,为垂足,,,为垂足.若,则到平面的距离等于A. B.C. D.1二、填空题:本大题共6小题,每小题5分,共30分。11.函数,的图象恒过定点P,则P点的坐标是_____.12._________.13.已知,用m,n表示为___________.14.若方程组有解,则实数的取值范围是__________15.经过点作圆的切线,则切线的方程为__________16.函数的最小正周期是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(,且)(1)求函数的定义域;(2)判断函数的奇偶性,并说明理由;(3)设,解不等式18.已知定义在上的奇函数,当时,.(1)求函数在上的解析式;(2)在给出的直角坐标系中作出的图像,并写出函数的单调区间.19.已知集合.(1)若,求a的值;(2)若且“”是“”的必要不充分条件,求实数a的取值范围.20.已知圆的圆心在直线上,且经过圆与圆的交点.(1)求圆的方程;(2)求圆的圆心到公共弦所在直线的距离.21.已知函数f(x)=ln(ex+1)+ax是偶函数,g(x)=f(lnx)(e=2.71828…)(Ⅰ)求实数a的值;(Ⅱ)判断并证明函数g(x)在区间(0,1)上的单调性
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由对数函数的性质以及根式的性质列不等式组,即可求解.【详解】由题意可得解得,所以原函数的定义域为,故选:C2、B【解析】根据表格中的数据,作出散点图,结合选项和函数的单调性,逐项判定,即可求解.【详解】根据表格中的数据,作出散点图,如图所示,根据散点图可知,随着的增大,的值增大,并且增长速度越来越快,结合选项:函数增长速度越来越缓慢,不符合题意;函数增长速度越来越快,符合题意;函数,增长速度不变,不符合题意;而函数,当时,可得;当时,可得,此时与真实数据误差较大,所以最接近的一个函数是.故选:B.3、C【解析】根据古典概型概率的计算公式直接计算.【详解】由题意可知甲、乙两名志愿者分别从7个比赛小项中各任选一项参加志愿服务工作共有7×7=49种情况,其中甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作共7种,所以甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作的概率是749故选:C.4、A【解析】由题意可知,关于的二次方程的两根分别为、,求出、的值,然后利用二次函数的基本性质可求得在区间上的最小值.【详解】由题意可知,关于的二次方程的两根分别为、,则,解得,则,故当时,函数取得最小值,即.故选:A.5、D【解析】根据绝对值不等式的解法和二次函数的性质,分别求得集合,即可求解.【详解】由,解得,即,即,又由,即,所以.故选:D.6、C【解析】因为定义在上的偶函数,所以即又在时为增函数,则,解得故选点睛:本题考查了函数的奇偶性,单调性和运用,考查对数不等式的解法及运算能力,所求不等式中与由对数式运算法则可知互为相反数,与偶函数的性质结合可将不等式化简,借助函数在上是增函数可确定在为减函数,利用偶函数的对称性可得到自变量的范围,从而求得关于的不等式,结合对数函数单调性可得到的取值范围7、你8、A【解析】先求得函数的定义域,利用二次函数的性质求得函数的单调区间,结合复合函数单调性的判定方法,即可求解.【详解】由不等式,即,解得,即函数的定义域为,令,可得其图象开口向下,对称轴的方程为,当时,函数单调递增,又由函数在定义域上为单调递减函数,结合复合函数的单调性的判定方法,可得函数的单调减区间为.故选:A.9、D【解析】根据基本初等函数的性质逐项判断后可得正确的选项.【详解】对于A,为上的减函数,不合题意,舍.对于B,为上的减函数,不合题意,舍.对于C,在为减函数,不合题意,舍.对于D,为上的增函数,符合题意,故选:D.10、C【解析】如图,在平面内过点作于点因为为直二面角,,所以,从而可得.又因为,所以面,故的长度就是点到平面的距离在中,因为,所以因为,所以.则在中,因为,所以.因为,所以,故选C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】令,解得,且恒成立,所以函数的图象恒过定点;故填.12、【解析】根据诱导公式可求该值.【详解】.故答案为:.【点睛】诱导公式有五组,其主要功能是将任意角的三角函数转化为锐角或直角的三角函数.记忆诱导公式的口诀是“奇变偶不变,符号看象限”.本题属于基础题.13、【解析】结合换底公式以及对数的运算法则即可求出结果.详解】,故答案为:.14、【解析】,化为,要使方程组有解,则两圆相交或相切,,即或,,故答案为.15、【解析】点在圆上,由,则切线斜率为2,由点斜式写出直线方程.【详解】因为点在圆上,所以,因此切线斜率为2,故切线方程为,整理得故答案为:16、【解析】直接利用三角函数的周期公式,求出函数的周期即可.【详解】函数中,.故答案为:【点睛】本题考查三角函数的周期公式的应用,是基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)奇函数,理由见解析;(3).【解析】(1)由对数真数大于零可构造不等式组求得结果;(2)根据奇偶性定义判断即可得到结论;(3)将函数化为,由对数函数性质可知,解不等式求得结果.【详解】(1)由题意得:,解得:,定义域为.(2),为定义在上的奇函数.(3)当时,,由得:,解得:,的解集为.18、(1)(2)图像答案见解析,单调递增区间为,单调递减区间为【解析】(1)由函数的奇偶性的定义和已知解析式,计算时的解析式,可得所求的解析式;(2)由分段函数的图像画法,可得所求图像,结合的图像,可得的单调区间【小问1详解】设,则,所以,又为奇函数,所以,又为定义在上的奇函数,所以,所以【小问2详解】作出函数的图像,如图所示:函数的单调递增区间为,单调递减区间为.19、(1)(2)【解析】(1)先求出集合B,再由题意可得从而可求出a的值,(2)由题意可得,从而有再结合可求出实数a的取值范围.【小问1详解】由题设知,∵,∴可得.【小问2详解】∵,∴,解得.∵“”是“”的必要不充分条件,∴.∴解得.因此,实数a的取值范围为.20、(1);(2).【解析】(1)求出的坐标,然后求出的中垂线方程,然后求出圆心和半径即可;(2)两圆相减可得方程,然后利用点到直线的距离公式求出答案即可.【详解】(1)设圆与圆交点为,由方程组,得或不妨令,,因此的中垂线方程为,由,得,所求圆的圆心,,所以圆的方程为,即(2)圆与圆的方程相减得公共弦方程,由圆的圆心,半径,且圆心到公共弦:的距离21、(I)a=(II)答案见解析【解析】(I)由函数f(x)=ln(ex+1)+ax偶函数,可得f(-x)=f(x),解得a.(II)由(I)可得:f(x)=ln(ex+1).g(x)=f(lnx)=ln(x+1).利用函数单调性的定义确定函数的单调性即可.【详解】(I)∵函数f(x)=ln(ex+1)+ax是偶函数,∴f(-x)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度行政单位合同内部管理优化与改进合同3篇
- 2025年度内墙粉刷施工与墙面涂料环保认证合同3篇
- 二零二五年度文化场馆保洁与文物保护合同3篇
- 二零二五年度农业农机信息化建设与维护合同3篇
- 2025年度新能源汽车居间买卖服务合同3篇
- 二零二五年度交通设施租赁合同范本3篇
- 农村农业劳务用工合同(2025年度)劳务派遣服务合同
- 2025年信用社黄金租赁合同模板3篇
- 2025年度汽车维修厂汽车用品销售承包合同3篇
- 2024年中国环保健康湿毛巾市场调查研究报告
- 毛细管升高法测量液体表面张力系数
- 室内覆盖方案设计与典型场景
- 放射性粒子植入自我评估报告
- 2023年山西云时代技术有限公司招聘笔试题库及答案解析
- 浙大中控DCS系统介绍(简洁版)
- GB/T 16288-2008塑料制品的标志
- GB/T 14486-2008塑料模塑件尺寸公差
- 北京市海淀区2022-2023学年高三期末考试历史试题及答案
- 顶板管理实施细则
- 2022年杭州西湖文化旅游投资集团有限公司招聘笔试试题及答案解析
- 中国青年运动史PPT模板
评论
0/150
提交评论