版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省菏泽重点中学2024年中考数学适应性模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图是某几何体的三视图,下列判断正确的是()A.几何体是圆柱体,高为2 B.几何体是圆锥体,高为2C.几何体是圆柱体,半径为2 D.几何体是圆锥体,直径为22.将抛物线y=-2xA.y=-2(x+1)2C.y=-2(x-1)23.下列运算正确的是()A.a2+a2=a4 B.(a+b)2=a2+b2 C.a6÷a2=a3 D.(﹣2a3)2=4a64.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是()A.∠ABD=∠C B.∠ADB=∠ABC C. D.5.如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A. B.1 C. D.6.如图,在圆O中,直径AB平分弦CD于点E,且CD=4,连接AC,OD,若∠A与∠DOB互余,则EB的长是()A.2 B.4 C. D.27.根据中国铁路总公司3月13日披露,2018年铁路春运自2月1日起至3月12日止,为期40天全国铁路累计发送旅客3.82亿人次.3.82亿用科学记数法可以表示为()A.3.82×107 B.3.82×108 C.3.82×109 D.0.382×10108.天气越来越热,为防止流行病传播,学校决定用420元购买某种牌子的消毒液,经过还价,每瓶便宜0.5元,结果比用原价购买多买了20瓶,求原价每瓶多少元?设原价每瓶x元,则可列出方程为()A.-=20 B.-=20C.-=20 D.9.如图,是的外接圆,已知,则的大小为A. B. C. D.10.某班体育委员对本班学生一周锻炼(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是()A.10 B.11 C.12 D.1311.如图,在中,,,,点分别在上,于,则的面积为()A. B. C. D.12.如果k<0,b>0,那么一次函数y=kx+b的图象经过()A.第一、二、三象限 B.第二、三、四象限C.第一、三、四象限 D.第一、二、四象限二、填空题:(本大题共6个小题,每小题4分,共24分.)13.据统计,今年无锡鼋头渚“樱花节”活动期间入园赏樱人数约803万人次,用科学记数法可表示为_____人次.14.某风扇在网上累计销量约1570000台,请将1570000用科学记数法表示为_____.15.从,0,π,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是____.16.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为______.17.若关于x的方程的解是正数,则m的取值范围是____________________18.如图所示,把一张长方形纸片沿折叠后,点分别落在点的位置.若,则等于________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=nx(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤nx20.(6分)某同学用两个完全相同的直角三角形纸片重叠在一起(如图1)固定△ABC不动,将△DEF沿线段AB向右平移.(1)若∠A=60°,斜边AB=4,设AD=x(0≤x≤4),两个直角三角形纸片重叠部分的面积为y,试求出y与x的函数关系式;(2)在运动过程中,四边形CDBF能否为正方形,若能,请指出此时点D的位置,并说明理由;若不能,请你添加一个条件,并说明四边形CDBF为正方形?21.(6分)如图,在大楼AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:,高为DE,在斜坡下的点C处测得楼顶B的仰角为64°,在斜坡上的点D处测得楼顶B的仰角为45°,其中A、C、E在同一直线上.求斜坡CD的高度DE;求大楼AB的高度;(参考数据:sin64°≈0.9,tan64°≈2).22.(8分)从2017年1月1日起,我国驾驶证考试正式实施新的驾考培训模式,新规定C2驾驶证的培训学时为40学时,驾校的学费标准分不同时段,普通时段a元/学时,高峰时段和节假日时段都为b元/学时.(1)小明和小华都在此驾校参加C2驾驶证的培训,下表是小明和小华的培训结算表(培训学时均为40),请你根据提供的信息,计算出a,b的值.学员培训时段培训学时培训总费用小明普通时段206000元高峰时段5节假日时段15小华普通时段305400元高峰时段2节假日时段8(2)小陈报名参加了C2驾驶证的培训,并且计划学够全部基本学时,但为了不耽误工作,普通时段的培训学时不会超过其他两个时段总学时的,若小陈普通时段培训了x学时,培训总费用为y元①求y与x之间的函数关系式,并确定自变量x的取值范围;②小陈如何选择培训时段,才能使得本次培训的总费用最低?23.(8分)平面直角坐标系xOy中(如图),已知抛物线y=ax2+bx+3与y轴相交于点C,与x轴正半轴相交于点A,OA=OC,与x轴的另一个交点为B,对称轴是直线x=1,顶点为P.(1)求这条抛物线的表达式和顶点P的坐标;(2)抛物线的对称轴与x轴相交于点M,求∠PMC的正切值;(3)点Q在y轴上,且△BCQ与△CMP相似,求点Q的坐标.24.(10分)随着地铁和共享单车的发展,“地铁+单车”已经成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间(单位:分钟)是关于x的一次函数,其关系如下表:地铁站ABCDEX(千米)891011.513(分钟)1820222528(1)求关于x的函数表达式;李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用来描述.请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.25.(10分)如图,一次函数的图象与反比例函数(为常数,且)的图象交于A(1,a)、B两点.求反比例函数的表达式及点B的坐标;在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.26.(12分)如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.写出图中小于平角的角.求出∠BOD的度数.小明发现OE平分∠BOC,请你通过计算说明道理.27.(12分)如图,两座建筑物的水平距离BC为40m,从D点测得A点的仰角为30°,B点的俯角为10°,求建筑物AB的高度(结果保留小数点后一位).参考数据sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,取1.1.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】试题解析:根据主视图和左视图为矩形是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱,再根据左视图的高度得出圆柱体的高为2;故选A.考点:由三视图判断几何体.2、C【解析】试题分析:∵抛物线y=-2x2+1向右平移1个单位长度,∴平移后解析式为:y=-2考点:二次函数图象与几何变换.3、D【解析】
根据完全平方公式、合并同类项、同底数幂的除法、积的乘方,即可解答.【详解】A、a2+a2=2a2,故错误;B、(a+b)2=a2+2ab+b2,故错误;C、a6÷a2=a4,故错误;D、(-2a3)2=4a6,正确;故选D.【点睛】本题考查了完全平方公式、同底数幂的除法、积的乘方以及合并同类项,解决本题的关键是熟记公式和法则.4、C【解析】
由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.【详解】∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,故选C.5、B【解析】
连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC为等腰直角三角形,即可求出所求.【详解】如图,连接BC,由网格可得AB=BC=,AC=,即AB2+BC2=AC2,∴△ABC为等腰直角三角形,∴∠BAC=45°,则tan∠BAC=1,故选B.【点睛】本题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键.6、D【解析】
连接CO,由直径AB平分弦CD及垂径定理知∠COB=∠DOB,则∠A与∠COB互余,由圆周角定理知∠A=30°,∠COE=60°,则∠OCE=30°,设OE=x,则CO=2x,利用勾股定理即可求出x,再求出BE即可.【详解】连接CO,∵AB平分CD,∴∠COB=∠DOB,AB⊥CD,CE=DE=2∵∠A与∠DOB互余,∴∠A+∠COB=90°,又∠COB=2∠A,∴∠A=30°,∠COE=60°,∴∠OCE=30°,设OE=x,则CO=2x,∴CO2=OE2+CE2即(2x)2=x2+(2)2解得x=2,∴BO=CO=4,∴BE=CO-OE=2.故选D.【点睛】此题主要考查圆内的综合问题,解题的关键是熟知垂径定理、圆周角定理及勾股定理.7、B【解析】
根据题目中的数据可以用科学记数法表示出来,本题得以解决.【详解】解:3.82亿=3.82×108,故选B.【点睛】本题考查科学记数法-表示较大的数,解答本题的关键是明确科学记数法的表示方法.8、C【解析】
关键描述语是:“结果比用原价多买了1瓶”;等量关系为:原价买的瓶数-实际价格买的瓶数=1.【详解】原价买可买瓶,经过还价,可买瓶.方程可表示为:﹣=1.故选C.【点睛】考查了由实际问题抽象出分式方程.列方程解应用题的关键步骤在于找相等关系.本题要注意讨价前后商品的单价的变化.9、A【解析】解:△AOB中,OA=OB,∠ABO=30°;∴∠AOB=180°-2∠ABO=120°;∴∠ACB=∠AOB=60°;故选A.10、B【解析】
根据统计图中的数据可以求得本班的学生数,从而可以求得该班这些学生一周锻炼时间的中位数,本题得以解决.【详解】由统计图可得,本班学生有:6+9+10+8+7=40(人),该班这些学生一周锻炼时间的中位数是:11,故选B.【点睛】本题考查折线统计图、中位数,解答本题的关键是明确题意,会求一组数据的中位数.11、C【解析】
先利用三角函数求出BE=4m,同(1)的方法判断出∠1=∠3,进而得出△ACQ∽△CEP,得出比例式求出PE,最后用面积的差即可得出结论;【详解】∵,
∴CQ=4m,BP=5m,
在Rt△ABC中,sinB=,tanB=,
如图2,过点P作PE⊥BC于E,
在Rt△BPE中,PE=BP•sinB=5m×=3m,tanB=,
∴,
∴BE=4m,CE=BC-BE=8-4m,
同(1)的方法得,∠1=∠3,
∵∠ACQ=∠CEP,
∴△ACQ∽△CEP,
∴,∴,
∴m=,
∴PE=3m=,
∴S△ACP=S△ACB-S△PCB=BC×AC-BC×PE=BC(AC-PE)=×8×(6-)=,故选C.【点睛】本题是相似形综合题,主要考查了相似三角形的判定和性质,三角形的面积的计算方法,判断出△ACQ∽△CEP是解题的关键.12、D【解析】
根据k、b的符号来求确定一次函数y=kx+b的图象所经过的象限.【详解】∵k<0,
∴一次函数y=kx+b的图象经过第二、四象限.
又∵b>0时,
∴一次函数y=kx+b的图象与y轴交与正半轴.
综上所述,该一次函数图象经过第一、二、四象限.
故选D.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、8.03×106【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.803万=.14、1.57×1【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将1570000用科学记数法表示为1.57×1.故答案为1.57×1.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15、【解析】分析:由题意可知,从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解:∵从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中有理数有0,3.14,6共3个,∴抽到有理数的概率是:.故答案为.点睛:知道“从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果”并能识别其中“0,3.14,6”是有理数是解答本题的关键.16、1【解析】首先设黄球的个数为x个,然后根据概率公式列方程即可求得答案.解:设黄球的个数为x个,根据题意得:=2/3解得:x=1.∴黄球的个数为1.17、m<4且m≠2【解析】解方程得x=4-m,由已知可得x>0且x-2≠0,则有4-m>0且4-m-2≠0,解得:m<4且m≠2.18、50°【解析】
先根据平行线的性质得出∠DEF的度数,再根据翻折变换的性质得出∠D′EF的度数,根据平角的定义即可得出结论.【详解】∵AD∥BC,∠EFB=65°,
∴∠DEF=65°,
又∵∠DEF=∠D′EF,
∴∠D′EF=65°,
∴∠AED′=50°.【点睛】本题考查翻折变换(折叠问题)和平行线的性质,解题的关键是掌握翻折变换(折叠问题)和平行线的性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)y=﹣2x+1;y=﹣80x【解析】
(1)根据OA、OB的长写出A、B两点的坐标,再用待定系数法求解一次函数的解析式,然后求得点C的坐标,进而求出反比例函数的解析式.(2)联立方程组求解出交点坐标即可.(3)观察函数图象,当函数y=kx+b的图像处于y=nx下方或与其有重合点时,x的取值范围即为【详解】(1)由已知,OA=6,OB=1,OD=4,∵CD⊥x轴,∴OB∥CD,∴△ABO∽△ACD,∴,∴,∴CD=20,∴点C坐标为(﹣4,20),∴n=xy=﹣80.∴反比例函数解析式为:y=﹣,把点A(6,0),B(0,1)代入y=kx+b得:,解得:.∴一次函数解析式为:y=﹣2x+1,(2)当﹣=﹣2x+1时,解得,x1=10,x2=﹣4,当x=10时,y=﹣8,∴点E坐标为(10,﹣8),∴S△CDE=S△CDA+S△EDA=.(3)不等式kx+b≤,从函数图象上看,表示一次函数图象不低于反比例函数图象,∴由图象得,x≥10,或﹣4≤x<0.【点睛】本题考查了应用待定系数法求一次函数和反比例函数解析式以及用函数的观点通过函数图像解不等式.20、(1)y=(0≤x≤4);(2)不能为正方形,添加条件:AC=BC时,当点D运动到AB中点位置时四边形CDBF为正方形.【解析】分析:(1)根据平移的性质得到DF∥AC,所以由平行线的性质、勾股定理求得GD=,BG==,所以由三角形的面积公式列出函数关系式;(2)不能为正方形,添加条件:AC=BC时,点D运动到AB中点时,四边形CDBF为正方形;当D运动到AB中点时,四边形CDBF是菱形,根据“直角三角形斜边上的中线等于斜边的一半”推知CD=AB,BF=DE,所以AD=CD=BD=CF,又有BE=AD,则CD=BD=BF=CF,故四边形CDBF是菱形,根据有一内角为直角的菱形是正方形来添加条件.详解:(1)如图(1)∵DF∥AC,∴∠DGB=∠C=90°,∠GDB=∠A=60°,∠GBD=30°∵BD=4﹣x,∴GD=,BG==y=S△BDG=××=(0≤x≤4);(2)不能为正方形,添加条件:AC=BC时,当点D运动到AB中点位置时四边形CDBF为正方形.∵∠ACB=∠DFE=90°,D是AB的中点∴CD=AB,BF=DE,∴CD=BD=BF=BE,∵CF=BD,∴CD=BD=BF=CF,∴四边形CDBF是菱形;∵AC=BC,D是AB的中点.∴CD⊥AB即∠CDB=90°∵四边形CDBF为菱形,∴四边形CDBF是正方形.点睛:本题是几何变换综合题型,主要考查了平移变换的性质,勾股定理,正方形的判定,菱形的判定与性质以及直角三角形斜边上的中线.(2)难度稍大,根据三角形斜边上的中线推知CD=BD=BF=BE是解题的关键.21、(1)斜坡CD的高度DE是5米;(2)大楼AB的高度是34米.【解析】试题分析:(1)根据在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:,高为DE,可以求得DE的高度;(2)根据锐角三角函数和题目中的数据可以求得大楼AB的高度.试题解析:(1)∵在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:,∴,设DE=5x米,则EC=12x米,∴(5x)2+(12x)2=132,解得:x=1,∴5x=5,12x=12,即DE=5米,EC=12米,故斜坡CD的高度DE是5米;(2)过点D作AB的垂线,垂足为H,设DH的长为x,由题意可知∠BDH=45°,∴BH=DH=x,DE=5,在直角三角形CDE中,根据勾股定理可求CE=12,AB=x+5,AC=x-12,∵tan64°=,∴2=,解得,x=29,AB=x+5=34,即大楼AB的高度是34米.22、(1)120,180;(2)①y=-60x+7200,0≤x≤;②x=时,y有最小值,此时y最小=-60×+7200=6400(元).【解析】
(1)根据小明和小华的培训结算表列出关于a、b的二元一次方程组,解方程即可求解;(2)①根据培训总费用=普通时段培训费用+高峰时段和节假日时段培训费用列出y与x之间的函数关系式,进而确定自变量x的取值范围;②根据一次函数的性质结合自变量的取值范围即可求解.【详解】(1)由题意,得,解得,故a,b的值分别是120,180;(2)①由题意,得y=120x+180(40-x),化简得y=-60x+7200,∵普通时段的培训学时不会超过其他两个时段总学时的,∴x≤(40-x),解得x≤,又x≥0,∴0≤x≤;②∵y=-60x+7200,k=-60<0,∴y随x的增大而减小,∴x取最大值时,y有最小值,∵0≤x≤;∴x=时,y有最小值,此时y最小=-60×+7200=6400(元).【点睛】本题考查了一次函数的应用,二元一次方程组的应用,理解题意得出数量关系是解题的关键.23、(1)(1,4)(2)(0,)或(0,-1)【解析】试题分析:(1)先求得点C的坐标,再由OA=OC得到点A的坐标,再根据抛物线的对称性得到点B的坐标,利用待定系数法求得解析式后再进行配方即可得到顶点坐标;(2)由OC//PM,可得∠PMC=∠MCO,求tan∠MCO即可;(3)分情况进行讨论即可得.试题解析:(1)当x=0时,抛物线y=ax2+bx+3=3,所以点C坐标为(0,3),∴OC=3,∵OA=OC,∴OA=3,∴A(3,0),∵A、B关于x=1对称,∴B(-1,0),∵A、B在抛物线y=ax2+bx+3上,∴,∴,∴抛物线解析式为:y=-x2+2x+3=-(x-1)2+4,∴顶点P(1,4);(2)由(1)可知P(1,4),C(0,3),所以M(1,0),∴OC=3,OM=1,∵OC//PM,∴∠PMC=∠MCO,∴tan∠PMC=tan∠MCO==;(3)Q在C点的下方,∠BCQ=∠CMP,CM=,PM=4,BC=,∴或,∴CQ=或4,∴Q1(0,),Q2(0,-1).24、(1)y1=2x+2;(2)选择在B站出地铁,最短时间为39.5分钟.【解析】
(1)根据表格中的数据,运用待定系数法,即可求得y1关于x的函数表达式;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=x2-9x+80,根据二次函数的性质,即可得出最短时间.【详解】(1)设y1=kx+b,将(8,18),(9,20),代入y1=kx+b,得:解得所以y1关于x的函数解析式为y1=2x+2.(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=2x+2+x2-11x+78=x2-9x+80=(x-9)2+39.5.所以当x=9时,y取得最小值,最小值为39.5,答:李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.【点睛】本题主要考查了二次函数的应用,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值最小值,在求二次函数的最值时,一定要注意自变量x的取值范围.25、(1),;(2)P,.【解析】试题分析:(1)由点A在一次函数图象上,结合一次函数解析式可求出点A的坐标,再由点A的坐标利用待定系数法即可求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,连接PB.由点B、D的对称性结合点B的坐标找出点D的坐标,设直线AD的解析式为y=mx+n,结合点A、D的坐标利用待定系数法求出直线AD的解析式,令直线AD的解析式中y=0求出点P的坐标,再通过分割图形结合三角形的面积公式即可得出结论.试题解析:(1)把点A(1,a)代入一次函数y=-x+4,得:a=-1+4,解得:a=3,∴点A的坐标为(1,3).把点A(1,3)代入反比例函数y=,得:3=k,∴反比例函数的表达式y=,联立两个函数关系式成方程组得:,解得:,或,∴点B的坐标为(3,1).(2)作点B作关于x轴的对称点D,交
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 接商稿流程合同范例
- 承接景观雕塑工程合同范例
- 橱柜招商加盟合同范例
- 医学影像技术练习题与参考答案
- 2025年乌鲁木齐货运丛业资格证试题及答案
- 涂料合同范例范例
- 2025年贵港货运资格证安检考试题
- 2025年乐山道路运输从业资格考试系统
- 汽车美容劳务合同范例
- 2025年三明货运从业资格证在哪里练题
- 水泥搅拌桩水灰比及浆液用量计算表(自动计算)
- 建筑物放线验线技术报告
- 年产2亿袋板蓝根颗粒剂车间工艺设计
- 下库进出水口拦污栅2X320KN双向门机安装方案
- 压缩固结试验
- 基数词-与序数词PPT优秀课件
- 双壁波纹管出厂合格证(共4页)
- 学校校医室常用药物配备目录及急救小常识
- API-6A-无损检测作业指导书
- 屏式过热器、高温过热器和高温再热器安装作业指导书
- 电子血压计现况及发展前景的研究
评论
0/150
提交评论