江苏省张家港市梁丰中学2025届九年级数学第一学期开学复习检测模拟试题【含答案】_第1页
江苏省张家港市梁丰中学2025届九年级数学第一学期开学复习检测模拟试题【含答案】_第2页
江苏省张家港市梁丰中学2025届九年级数学第一学期开学复习检测模拟试题【含答案】_第3页
江苏省张家港市梁丰中学2025届九年级数学第一学期开学复习检测模拟试题【含答案】_第4页
江苏省张家港市梁丰中学2025届九年级数学第一学期开学复习检测模拟试题【含答案】_第5页
已阅读5页,还剩20页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页江苏省张家港市梁丰中学2025届九年级数学第一学期开学复习检测模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)一元二次方程配方后可化为()A. B. C. D.2、(4分)下列调查中,适合用普查方式的是()A.夏季冷饮市场上某种冰淇淋的质量 B.某品牌灯泡的使用寿命C.某校九年级三班学生的视力 D.公民保护环境的意识3、(4分)如图,∠1,∠2,∠3,∠4,∠5是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=75°,则∠AED的度数是()A.120° B.110° C.115° D.100°4、(4分)下列各式正确的个数是()①;②;③;④A.0 B.1 C.2 D.35、(4分)下列计算错误的是A. B.C. D.6、(4分)如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,点Q的坐标为(0,2).点P(x,0)在边AB上运动,若过点Q、P的直线将矩形ABCD的周长分成2:1两部分,则x的值为()A.或- B.或- C.或- D.或-7、(4分)下列交通标志图案中,是中心对称图形的是()A. B. C. D.8、(4分)如图,在中,的平分线交于,若,,则的长度为()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在平面直角坐标系中,已知的直角顶点在轴上,,反比例函数在第一象限的图像经过边上点和的中点,连接.若,则实数的值为__________.10、(4分)如图,矩形中,,,点是边上一点,连接,把沿折叠,使点落在点处.当为直角三角形时,则的长为________.11、(4分)反比例函数y=的图象如图所示,A,P为该图象上的点,且关于原点成中心对称.在△PAB中,PB∥y轴,AB∥x轴,PB与AB相交于点B.若△PAB的面积大于12,则关于x的方程(a-1)x2-x+=0的根的情况是________________.12、(4分)分解因式:____________13、(4分)五子棋的比赛规则是:一人执黑子,一人执白子,两人轮流放棋,每次放一个棋子在棋盘的格点处,只要有同色的五个棋子先连成一条线(横、竖、斜均可)就获得胜利.如图是两人正在玩的一盘棋,若白棋A所在位置用坐标表示是(-2,2),黑棋B所在位置用坐标表示是(0,4),现在轮到黑棋走,黑棋放到点C的位置就获得胜利,则点C的坐标是__________.三、解答题(本大题共5个小题,共48分)14、(12分)某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:每人加工件数540450300240210120人数112632(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)若以本次统计所得的月加工零件数的平均数定为每位工人每月的生产定额,你认为这个定额是否合理,为什么?15、(8分)某校为奖励学习之星,准备在某商店购买A、B两种文具作为奖品,已知一件A种文具的价格比一件B种文具的价格便宜5元,且用600元买A种文具的件数是用400元买B种文具的件数的2倍.(1)求一件A种文具的价格;(2)根据需要,该校准备在该商店购买A、B两种文具共150件.①求购买A、B两种文具所需经费W与购买A种文具的件数a之间的函数关系式;②若购买A种文具的件数不多于B种文具件数的2倍,且计划经费不超过2750元,求有几种购买方案,并找出经费最少的方案,及最少需要多少元?16、(8分)为了解某校八年级学生每周平均课外阅读时间的情况,随机抽查了该校八年级部分学生,对其每周平均课外阅读时间进行统计,根据统计数据绘制成如图的两幅尚不完整的统计图:(1)本次共抽取了多少人?并请将图1的条形图补充完整;(2)这组数据的众数是________;求出这组数据的平均数;(3)若全校有1500人,请你估计每周平均课外阅读时间为3小时的学生多少人?17、(10分)计算:(1)(+)()+|1﹣|;(2)﹣()2+(π+)0﹣+|﹣2|18、(10分)如图,直线l1的函数表达式为y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知一组数据1,5,7,x的众数与中位数相等,则这组数据的平均数是___________.20、(4分)已知函数y=(m﹣1)x+m2﹣1是正比例函数,则m=_____.21、(4分)双曲线,在第一象限的图象如图,过上的任意一点,作轴的平行线交于点,交轴于点,若,则的值为__________.22、(4分)如图,直线y=﹣2x+2与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则直线AB′的函数解析式是_____.23、(4分)若恒成立,则A+B=____.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在边长为1个单位长度的小正方形组成的网络中,给出了△ABC和△DEF(网点为网格线的交点)(1)将△ABC向左平移两个单位长度,再向上平移三个单位长度,画出平移后的图形△A1B2C3;(2)画出以点O为对称中心,与△DEF成中心对称的图形△D2E2F2;(3)求∠C+∠E的度数.25、(10分)图1,图2是两张形状、大小完全相同的6×6方格纸,方格纸中的每个小长方形的边长为1,所求的图形各顶点也在格点上.(1)在图1中画一个以点,为顶点的菱形(不是正方形),并求菱形周长;(2)在图2中画一个以点为所画的平行四边形对角线交点,且面积为6,求此平行四边形周长.26、(12分)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】

先把常数项移到方程右侧,再把方程两边加上4,然后把方程左边写成完全平方形式即可.【详解】解:x2+4x=−1,

x2+4x+4=1,

(x+2)2=1.

故选:C.本题考查了解一元二次方程−配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.2、C【解析】

由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,据此解答即可.【详解】解:A、夏季冷饮市场上某种冰淇淋的质量,适合抽样调查,故本选项错误;B、某品牌灯泡的使用寿命,适合抽样调查,故本选项错误;C、某校九年级三班学生的视力,适合全面调查,故本选项正确;D、调查公民保护环境的意识,适合抽样调查,故本选项错误.故选:C.本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3、A【解析】

根据多边形的外角和求出∠5的度数,然后根据邻补角的和等于180°列式求解即可.详【详解】解:∵∠1=∠2=∠3=∠4=75°,∴∠5=360°﹣75°×4=360°﹣300°=60°,∴∠AED=180°﹣∠5=180°﹣60°=120°.故选A.本题考查了多边形的外角和等于360°的性质以及邻补角的和等于180°的性质,是基础题,比较简单.4、B【解析】

根据根式运算法则逐个进行计算即可.【详解】解:①,故错误;

②这个形式不存在,二次根式的被开分数为非负数,故错误;

③;,正确;

④,故错误.

故选B.本题考查了二次根式的化简,注意二次根式要化最简.5、A【解析】

根据根式的计算法则逐个识别即可.【详解】A错误,;B.,正确;C.,正确D.,正确故选A.本题主要考查根式的计算,特别要注意算术平方根的计算.6、D【解析】

分类讨论:点P在OA上和点P在OB上两种情况.根据题意列出比例关系式,直接解答即可得出x得出值.【详解】如图,∵AB的中点与原点O重合,在矩形ABCD中,AB=2,AD=1,∴A(﹣1,0),B(1,0),C(1,1).当点P在OB上时.易求G(,1)∵过点Q、P的直线将矩形ABCD的周长分成2:1两部分,则AP+AD+DG=3+x,CG+BC+BP=3﹣x,由题意可得:3+x=2(3﹣x),解得x=.由对称性可求当点P在OA上时,x=﹣.故选:D.考查了一次函数的综合题,解题关键是运用数形结合思想.7、C【解析】

根据中心对称图形的概念,分别判断即可.【详解】解:A、B、D不是中心对称图形,C是中心对称图形.故选C.点睛:本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.8、B【解析】

由角平分线的定义和平行四边形的性质可求得∠ABE=∠AEB,易得AB=AE.【详解】解:∵四边形ABCD为平行四边形,∴AB=CD=3,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AE=AB=3,故选:B.本题主要考查平行四边形的性质,利用平行线的性质和角平分线的定义求得∠ABE=∠AEB是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】

先根据含30°的直角三角形得出点B和点D的坐标,再根据△OAC面积为4和点C在反比例函数图象上得出k.【详解】在Rt△OAB中,∠B=30°,∴可设OA=a,则AB=OA=a,∴点B的坐标为(a,a),∴直线OB的解析是为y=x∵D是AB的中点∴点D的坐标为(a,a)∴k=a2又∵S△OAC=4,∴OA•yc=4,即•a•yc=4,∴yc=∴C(,)∴k=•=∴∴a2=16,∴k=a2=8.故答案为8.本题主要考查反比例函数的图象和性质,熟练运用30°直角三角形的性质与反比例函数k的几何意义是解题的关键.10、或【解析】

当△CB′E为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=10,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=6,可计算出CB′=4,设BE=x,则EB′=x,CE=8-x,然后在Rt△CEB′中运用勾股定理可计算出x.再在Rt△ABE中,利用勾股定理可得AE的长②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.可得AB=BE,在Rt△ABE中,利用勾股定理可得AE的长.【详解】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=6,BC=8,∴AC=10,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=6,∴CB′=10-6=4;设BE=,则EB′=,CE=在Rt△CEB′中,由勾股定理可得:,解得:在Rt△ABE中,利用勾股定理可得:②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=6,∴在Rt△ABE中,利用勾股定理可得:综上所述,的长为或故答案为或本题考查了折叠问题:折叠前后两图形全等,也考查了矩形的性质以及勾股定理.注意需要分类讨论11、没有实数根【解析】分析:由比例函数y=的图象位于一、三象限得出a+4>0,A、P为该图象上的点,且关于原点成中心对称,得出1xy>11,进一步得出a+4>6,由此确定a的取值范围,进一步利用根的判别式判定方程根的情况即可.详解:∵反比例函数y=的图象位于一、三象限,∴a+4>0,∴a>-4,∵A、P关于原点成中心对称,PB∥y轴,AB∥x轴,△PAB的面积大于11,∴1xy>11,即a+4>6,a>1∴a>1.∴△=(-1)1-4(a-1)×=1-a<0,∴关于x的方程(a-1)x1-x+=0没有实数根.故答案为:没有实数根.点睛:此题综合考查了反比例函数的图形与性质,一元二次方程根的判别式,注意正确判定a的取值范围是解决问题的关键.12、a(x+5)(x-5)【解析】

先公因式a,然后再利用平方差公式进行分解即可.【详解】故答案为a(x+5)(x-5).13、(3,3)【解析】

根据题意可以画出相应的平面直角坐标系,从而可以得到点C的坐标.【详解】由题意可得如图所示的平面直角坐标系,故点C的坐标为(3,3),故答案为(3,3).本题考查坐标确定位置,解题的关键是明确题意,建立合适的平面直角坐标系.三、解答题(本大题共5个小题,共48分)14、(1)平均数:260件;中位数:240件;众数:240件(2)不合理,定额为240较为合理【解析】

分析:(1)平均数=加工零件总数÷总人数,中位数是将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.本题中应是第7个数.众数又是指一组数据中出现次数最多的数据.240出现6次.(2)应根据中位数和众数综合考虑.详解:(1)平均数:;中位数:240件;众数:240件.(2)不合理,因为表中数据显示,每月能完成260件的人数一共是4人,还有11人不能达到此定额,尽管260是平均数,但不利于调动多数员工的积极性,因为240既是中位数,又是众数,是大多数人能达到的定额,故定额为240较为合理.点睛:本题考查了平均数、中位数和众数的知识,在求本题的平均数时,应注意先算出15个人加工的零件总数.为了大多数人能达到的定额,制定标准零件总数时一般应采用中位数或众数.15、(1)一件A种文具的价格为15元;(2)①W=-5a+3000;②有51种购买方案,经费最少的方案购买A种玩具100件,B种玩具50件,最低费用为2500元.【解析】

(1)根据题意可以得到相应的分式方程,从而可以求得一件A种文具的价格;(2)①根据题意,可以直接写出W与a之间的函数关系式;②根据题意可以求得a的取值范围,再根据W与a的函数关系式,可以得到W的最小值,本题得以解决.【详解】(1)设一件A种文具的价格为x元,则一件B种玩具的价格为(x+5)元,解得,x=15,经检验,x=15是原分式方程的解,答:一件A种文具的价格为15元;(2)①由题意可得,W=15a+(15+5)(150-a)=-5a+3000,即购买A、B两种文具所需经费W与购买A种文具的件数a之间的函数关系式是W=-5a+3000;②∵购买A种文具的件数不多于B种文具件数的2倍,且计划经费不超过2750元,∴,解得,50≤a≤100,∵a为整数,∴共有51种购买方案,∵W=-5a+3000,∴当a=100时,W取得最小值,此时W=2500,150-a=100,答:有51种购买方案,经费最少的方案购买A种玩具100件,B种玩具50件,最低费用为2500元.本题考查一次函数的应用、分式方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质、不等式的性质和分式方程的知识解答,注意分式方程要检验.16、(1)60人,图见解析;(2)众数是3,平均数是2.75;(3)500人.【解析】

(1)根据统计图中的数据可以求得本次共抽取了学生多少人,阅读3小时的学生有多少人,从而可以将条形统计图补充完整;(2)根据统计图中的数据可以求得众数和平均数;(3)根据统计图中的数据可以求得课外阅读时间为3小时的学生有多少人.【详解】解:(1)由图2知阅读时间为2小时的扇形图圆形角为90°,即阅读时间为2小时的概率为,再根据图1可知阅读2小时的人数为15人,所以本次共抽取了15÷=60名学生,阅读3小时的学生有:60-10-15-10-5=20(名),补充完整的条形统计图如下图所示;(2)由条形统计图可得,这组数据的众数是3,这组数据的平均数是:;(3)1500×=500(人),答:课外阅读时间为3小时的学生有500人.本题考查条形统计图、扇形统计图、用样本估计总体、加权平均数、众数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.17、(1)(2)【解析】

(1)利用平方差公式计算,再算出绝对值的值,即可解答(2)先算出零指数幂,算术平方根,再根据二次根式的混合运算即可【详解】解:(1)()()+|1﹣|=3﹣2+﹣1=;(2)﹣()2+(π+)0﹣+|﹣2|=﹣3+1﹣3+2﹣=﹣3.此题考查二次根式的混合运算,解题关键在于掌握运算法则18、(1)D(1,0)(2)y=x-6(3)可求得点C(2,-3),则S△ADC=【解析】

解:(1)因为是:与轴的交点,所以当时,,所以点;(2)因为在直线上,设的解析式为,所以直线的函数表达式;(3)由,所以点的坐标为,所以的底高为的纵坐标的绝对值为,所以;此题考查一次函数解析式的求法,一次函数与坐标轴交点的求.和二元一次方程组的解法,两条直线交点的求法,即把两个一次函数对应的解析式构成二元一次方程组,求出方程组的解就是两条直线的交点坐标,也考查了三角形面积的求法;一、填空题(本大题共5个小题,每小题4分,共20分)19、4.1【解析】

分别假设众数为1、1、7,分类讨论、找到符合题意得x的值,再根据平均数的定义求解可得.【详解】若众数为1,则数据为1、1、1、7,此时中位数为3,不符合题意;若众数为1,则数据为1、1、1、7,中位数为1,符合题意,此时平均数为=4.1;若众数为7,则数据为1、1、7、7,中位数为6,不符合题意;故答案为:4.1.本题主要考查众数、中位数及平均数,根据众数的可能情况分类讨论求解是解题的关键.20、-2【解析】

由正比例函数的定义可得m2﹣2=2,且m﹣2≠2.【详解】解:由正比例函数的定义可得:m2﹣2=2,且m﹣2≠2,解得:m=﹣2,故答案为:﹣2.本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠2.21、1【解析】

根据S△AOC-S△BOC=S△AOB,列出方程,求出k的值.【详解】由题意得:S△AOC-S△BOC=S△AOB,

=1,

解得,k=1,

故答案为:1.此题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.根据面积关系得出方程是解题的关键.22、y=0.5x−0.5【解析】

令x=0,求得点B的坐标,令y=0,求得点A的坐标,由旋转的性质可知:AO′=AO,O′B′=OB,从而可求得点B′的坐标.【详解】令x=0得y=2,则OB=2,令y=0得,x=1,则OA=1,由旋转的性质可知:O′A=1,O′B′=2.则点B′(3,1).设直线AB′的函数解析式为y=kx+b,把(1,0)(3,1)代入解析式,可得,解得:,所以解析式为:y=0.5x−0.5;此题考查一次函数图象与几何变换,解题关键在于求出A,B的坐标.23、2.【解析】

根据异分母分式加减法法则将进行变形,继而由原等式恒成立得到关于A、B的方程组,解方程组即可得.【详解】,又∵∴,解得,∴A+B=2,故答案为:2.本题考查了分式的加减法,恒等式的性质,解二元一次方程组,得到关于A、B的方程组是解题的关键.二、解答题(本大题共3个小题,共30分)24、(1)见解析;(2)见解析;(3)45°【解析】

(1)利用网格特点和平移的性质画出点A、B、C的对应点A1、B2、C3,从而得到△A1B2C3;(2)利用网格特点和中心对称的性质画出D、E、F的对应点D2、E2、F2,从而得到△D2E2F2;(3)利用平移和中心对称的性质得到∠C=∠A1C3B2,∠E=∠D2E2F2,则∠C+∠E=∠A1C3F2,连接A1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论