江苏省盐城市大丰市创新英达学校2025届九上数学开学达标检测模拟试题【含答案】_第1页
江苏省盐城市大丰市创新英达学校2025届九上数学开学达标检测模拟试题【含答案】_第2页
江苏省盐城市大丰市创新英达学校2025届九上数学开学达标检测模拟试题【含答案】_第3页
江苏省盐城市大丰市创新英达学校2025届九上数学开学达标检测模拟试题【含答案】_第4页
江苏省盐城市大丰市创新英达学校2025届九上数学开学达标检测模拟试题【含答案】_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页江苏省盐城市大丰市创新英达学校2025届九上数学开学达标检测模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图所示,函数和的图象相交于(–1,1),(2,2)两点.当时,x的取值范围是()A.x<–1 B.x<–1或x>2 C.x>2 D.–1<x<22、(4分)为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,关于这10户家庭的月用电量说法正确的是()月用电量(度)2530405060户数12421A.极差是3 B.众数是4 C.中位数40 D.平均数是20.53、(4分)点P(1,2)关于原点的对称点P′的坐标为(

)A.(2,1)B.(﹣1,﹣2)C.(1,﹣2)D.(﹣2,﹣1)4、(4分)若正多边形的一个外角是,则该正多边形的内角和为()A. B. C. D.5、(4分)下列图形中既是中心对称图形又是轴对称图形的是()A. B. C. D.6、(4分)若不等式组的解集为﹣1<x<1,则(a﹣3)(b+3)的值为()A.1 B.﹣1 C.2 D.﹣27、(4分)已知数据:1,2,0,2,﹣5,则下列结论错误的是()A.平均数为0 B.中位数为1 C.众数为2 D.方差为348、(4分)在一个不透明的盒子里装有2个红球和1个黄球,每个球除颜色外都相同,从中任意摸出2个球。下列事件中,不可能事件是()A.摸出的2个球都是红球B.摸出的2个球都是黄球C.摸出的2个球中有一个是红球D.摸出的2个球中有一个是黄球二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,P是矩形ABCD的边AD上一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是__.10、(4分)对甲、乙、丙三名射击手进行20次测试,平均成绩都是环,方差分别是,,,在这三名射击手中成绩最稳定的是______.11、(4分)如图,正方形中,,点在边上,且;将沿对折至,延长交边于点,连结,下列结论:①.;②.;③..其中,正确的结论有__________________.(填上你认为正确的序号)12、(4分)一次函数y=kx+b(k,b是常数,k≠0)图象如图所示,则不等式kx+b>0的解集是_____.13、(4分)在2017年的理化生实验考试中某校6名学生的实验成绩统计如图,这组数据的众数是___分.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在平面直角坐标系中,函数的图象与直线交于点A(3,m).(1)求k、m的值;(2)已知点P(n,n)(n>0),过点P作平行于轴的直线,交直线y=x-2于点M,过点P作平行于y轴的直线,交函数的图象于点N.①当n=1时,判断线段PM与PN的数量关系,并说明理由;②若PN≥PM,结合函数的图象,直接写出n的取值范围.15、(8分)如图为一个巨型广告牌支架的示意图,其中AB=13m,AD=12m,BD=5m,AC=15m,求广告牌支架的示意图ΔABC的周长.16、(8分)已知在▱ABCD中,点E、F在对角线BD上,BE=DF,点M、N在BA、DC延长线上,AM=CN,连接ME、NF.试判断线段ME与NF的关系,并说明理由.17、(10分)写出同时具备下列两个条件的一次函数关系式_____.(写出一个即可)(1)y随x的增大而减小;(2)图象经过点(1,﹣2).18、(10分)某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑,经投标,购买1块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需80000元.(1)求购买1块电子白板和一台笔记本电脑各需多少元?(2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的总费用不超过2700000元,并购买笔记本电脑的台数不超过购买电子白板数量的3倍,该校有哪几种购买方案?(3)上面的哪种购买方案最省钱?按最省钱方案购买需要多少钱?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%,小桐的三项成绩(百分制)依次为95,90,1.则小桐这学期的体育成绩是__________.20、(4分)如图,在平面直角坐标系中,点,过点作的垂线交轴于点,过点作的垂线交轴于点,过点作的垂线交轴于点……按此规律继续作下去,直至得到点为止,则点的坐标为_________.21、(4分)化简:______.22、(4分)一次函数y=-2x+4的图象与x轴交点坐标是______,与y轴交点坐标是_________23、(4分)对于实数,我们用符号表示两数中较小的数,如.因此,________;若,则________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,将绕点A按逆时针方向旋转,使点B落在BC边上的点D处,得.若,,求的度数.25、(10分)某班“数学兴趣小组”对函数的图象和性质进行了探究,过程如下,请补充完整.(1)自变量的取值范围是全体实数,与的几组对应值列表如下:…012345……42101234…其中,__________.(2)根据上表的数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察图象,写出该函数的两条性质:①____________________________________________________________②____________________________________________________________(4)进一步探究函数图象发现:①方程的解是__________.②方程的解是__________.③关于的方程有两个不相等实数根,则的取值范围是__________.26、(12分)如图,菱形纸片的边长为翻折使点两点重合在对角线上一点分别是折痕.设.(1)证明:;(2)当时,六边形周长的值是否会发生改变,请说明理由;(3)当时,六边形的面积可能等于吗?如果能,求此时的值;如果不能,请说明理由.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】试题解析:当x≥0时,y1=x,又,∵两直线的交点为(1,1),∴当x<0时,y1=-x,又,∵两直线的交点为(-1,1),由图象可知:当y1>y1时x的取值范围为:x<-1或x>1.故选B.2、C【解析】

极差、中位数、众数、平均数的定义和计算公式分别对每一项进行分析,即可得出答案.【详解】解:A、这组数据的极差是:60-25=35,故本选项错误;

B、40出现的次数最多,出现了4次,则众数是40,故本选项错误;

C、把这些数从小到大排列,最中间两个数的平均数是(40+40)÷2=40,则中位数是40,故本选项正确;

D、这组数据的平均数(25+30×2+40×4+50×2+60)÷10=40.5,故本选项错误;

故选:C.本题考查了极差、平均数、中位数、众数的知识,解答本题的关键是掌握各知识点的概念.3、B【解析】

根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】点P(1,2)关于原点的对称点P′的坐标为(-1,-2),故选B.此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.4、C【解析】

根据正多边形的外角度数求出多边形的边数,根据多边形的内角和公式即可求出多边形的内角和.【详解】由题意,正多边形的边数为,其内角和为.故选C.考查多边形的内角和与外角和公式,熟练掌握公式是解题的关键.5、C【解析】

根据轴对称图形与中心对称图形的概念求解.【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,也是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误,故选C.本此题考查了轴对称及中心对称图形的判断,解答本题的关键是掌握中心对称图形与轴对称图形的概念.6、D【解析】试题分析:解不等式2x﹣a<1,得:x<,解不等式x﹣2b>3,得:x>2b+3,∵不等式组的解集为﹣1<x<1,∴,解得:a=1,b=﹣2,当a=1,b=﹣2时,(a﹣3)(b+3)=﹣2×1=﹣2,故选D.考点:解一元一次不等式组7、D【解析】

根据平均数、方差的计算公式和中位数、众数的定义分别进行解答,即可得出答案.【详解】A.这组数据:1,2,0,2,﹣5的平均数是:(1+2+0+2-5)÷5=0,故本选项正确;B.把这组数按从小到大的顺序排列如下:-5,0,1,2,2,可观察1处在中间位置,所以中位数为1,故本选项正确;C.观察可知这组数中出现最多的数为2,所以众数为2,故本选项正确;D.s2=所以选D本题考查众数,算术平均数,中位数,方差;熟练掌握平均数、方差的计算公式和中位数、众数的定义是解决本题的关键.由于它们的计算由易到难为众数、中位数、算术平方根、方差,所以考试时可按照这样的顺序对选项进行判断,例如本题前三个选项正确,直接可以选D,就可以不用计算方差了.8、B【解析】

直接利用小球个数进而得出不可能事件.【详解】解:在一个不透明的盒子里装有2个红球和1个黄球,每个球外颜色都相同,从中任意摸出两个球,下列事件中,不可能事件是摸出的2个黄球.

故选:B.此题主要考查了随机事件,正确把握随机事件、不可能事件的定义是解题关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、4.1【解析】

首先连接OP,由矩形的两条边AB、BC的长分别为6和1,可求得OA=OD=5,△AOD的面积,然后由S△AOD=S△AOP+S△DOP=OA•PE+OD•PF求得答案.【详解】解:连接OP,

∵矩形的两条边AB、BC的长分别为6和1,

∴S矩形ABCD=AB•BC=41,OA=OC,OB=OD,AC=BD=,

∴OA=OD=5,

∴S△ACD=S矩形ABCD=24,

∴S△AOD=S△ACD=12,

∵S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=×5×PE+×5×PF=(PE+PF)=12,

解得:PE+PF=4.1.

故答案为:4.1.此题考查了矩形的性质以及三角形面积问题.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.10、乙【解析】

根据方差的意义,结合三人的方差进行判断即可得答案.【详解】解:∵甲、乙、丙三名射击手进行20次测试,平均成绩都是9.3环,方差分别是3.5,0.2,1.8,3.5>1.8>0.2,∴在这三名射击手中成绩最稳定的是乙,故答案为乙.本题考查了方差的意义,利用方差越小成绩越稳定得出是解题关键.11、①②③【解析】分析:根据折叠的相知和正方形的性质可以证明⊿≌⊿;根据勾股定理可以证得;先证得,由平行线的判定可证得;由于⊿和⊿等高的.故由⊿:⊿求得面积比较即解得.详解:∵,,∴⊿≌⊿(),∴,故①正确的.∵,∴,,设,则,,在⊿中,根据勾股定理有:,即,解得即,则,∴,∴,∵且满足,∴,∴故②正确的.∵,且⊿和⊿等高的.∴⊿:⊿=,∵⊿=,∴⊿=⊿=,故③正确的.故答案为:①②③.点睛:本题是一道综合性较强的几何题,其中勾股定理与方程思想的结合起来为破解②③提供了有力的支撑,技巧性比较强,也是本题的难点所在,对于大多数同学来说具有一定的挑战性.12、x>-2【解析】试题解析:根据图象可知:当x>-2时,一次函数y=kx+b的图象在x轴的上方.即kx+b>0.考点:一次函数与一元一次不等式.13、1【解析】

根据图象写出这组数据,再根据一组数据中出现次数最多的数据叫做众数求解.【详解】解:由图可得,

这组数据分别是:24,24,1,1,1,30,

∵1出现的次数最多,

∴这组数据的众数是1.

故答案为:1.本题考查折线统计图和众数,解答本题的关键是明确众数的定义,利用数形结合的思想解答.三、解答题(本大题共5个小题,共48分)14、(1)k的值为3,m的值为1;(2)0<n≤1或n≥3.【解析】分析:(1)将A点代入y=x-2中即可求出m的值,然后将A的坐标代入反比例函数中即可求出k的值.(2)①当n=1时,分别求出M、N两点的坐标即可求出PM与PN的关系;②由题意可知:P的坐标为(n,n),由于PN≥PM,从而可知PN≥2,根据图象可求出n的范围.详解:(1)将A(3,m)代入y=x-2,∴m=3-2=1,∴A(3,1),将A(3,1)代入y=,∴k=3×1=3,m的值为1.(2)①当n=1时,P(1,1),令y=1,代入y=x-2,x-2=1,∴x=3,∴M(3,1),∴PM=2,令x=1代入y=,∴y=3,∴N(1,3),∴PN=2∴PM=PN,②P(n,n),点P在直线y=x上,过点P作平行于x轴的直线,交直线y=x-2于点M,M(n+2,n),∴PM=2,∵PN≥PM,即PN≥2,∴0<n≤1或n≥3点睛:本题考查反比例函数与一次函数的综合问题,解题的关键是求出反比例函数与一次函数的解析式,本题属于基础题型.15、ΔABC的周长为42m.【解析】

直接利用勾股定理逆定理得出AD⊥BC,再利用勾股定理得出DC的长,进而得出答案.【详解】解:在ΔABD中,∵AB=13m   ∴A∴∠ADB=∠ADC=90°∴AD⊥BC在RtΔADC中,∵AD=12m   ∴DC=A∴BC=BD+DC=5+9=14m∴BC+AB+AC=14+13+15=42m∴ΔABC的周长为42m.此题主要考查了勾股定理以及勾股定理的逆定理,正确得出DC的长是解题关键.16、ME=NF且ME∥NF,理由见解析【解析】

利用SAS证得△BME≌△DNF后即可证得结论.【详解】证明:ME=NF且ME∥NF.理由如下:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EBM=∠FDN,AB=CD,∵AM=CN,∴MB=ND,∵BE=DF,∴BF=DE,∵在△BME和△DNF中,∴△BME≌△DNF(SAS),∴ME=NF,∠MEB=∠NFD,∴∠MEF=∠BFN.∴ME∥NF.∴ME=NF且ME∥NF.此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题关键.17、y=-x-1【解析】试题分析:当y随着x的增大而减小时,则k<0,则本题我们可以设一次函数的解析式为:y=-x+b,然后将点(1,-2)代入求出b的值.考点:函数图象的性质18、(1)购买1块电子白板需要15000元,一台笔记本电脑需要4000元(2)有三种购买方案:方案一:购买笔记本电脑295台,则购买电子白板101块;方案二:购买笔记本电脑296台,则购买电子白板100块;方案三:购买笔记本电脑297台,则购买电子白板99块.(3)当购买笔记本电脑297台、购买电子白板99块时,最省钱,共需费用2673000元【解析】

(1)设购买1块电子白板需要x元,一台笔记本电脑需要y元,由题意得等量关系:①买1块电子白板的钱=买3台笔记本电脑的钱+3000元,②购买4块电子白板的费用+5台笔记本电脑的费用=80000元,由等量关系可得方程组,解方程组可得答案.(2)设购买购买电子白板a块,则购买笔记本电脑(396﹣a)台,由题意得不等关系:①购买笔记本电脑的台数≤购买电子白板数量的3倍;②电子白板和笔记本电脑总费用≤2700000元,根据不等关系可得不等式组,解不等式组,求出整数解即可.(3)由于电子白板贵,故少买电子白板,多买电脑,根据(2)中的方案确定买的电脑数与电子白板数,再算出总费用.【详解】(1)设购买1块电子白板需要x元,一台笔记本电脑需要y元,由题意得:,解得:.答:购买1块电子白板需要15000元,一台笔记本电脑需要4000元.(2)设购买购买电子白板a块,则购买笔记本电脑(396﹣a)台,由题意得:,解得:.∵a为整数,∴a=99,100,101,则电脑依次买:297,296,295.∴该校有三种购买方案:方案一:购买笔记本电脑295台,则购买电子白板101块;方案二:购买笔记本电脑296台,则购买电子白板100块;方案三:购买笔记本电脑297台,则购买电子白板99块.(3)设购买笔记本电脑数为z台,购买笔记本电脑和电子白板的总费用为W元,则W=4000z+15000(396﹣z)=﹣11000z+5940000,∵W随z的增大而减小,∴当z=297时,W有最小值=2673000(元)∴当购买笔记本电脑297台、购买电子白板99块时,最省钱,共需费用2673000元.一、填空题(本大题共5个小题,每小题4分,共20分)19、2.5【解析】

根据题意,求小桐的三项成绩的加权平均数即可.【详解】95×20%+90×30%+1×50%=2.5(分),答:小桐这学期的体育成绩是2.5分.故答案是:2.5本题主要考查加权平均数,掌握加权平均数的意义,是解题的关键.20、【解析】

分别写出、、的坐标找到变化规律后写出答案即可.【详解】解:、,,的坐标为:,同理可得:的坐标为:,的坐标为:,,点横坐标为,即:,点坐标为,,故答案为:,.本题考查了规律型问题,解题的关键是根据点的坐标的变化得到规律,利用得到的规律解题.21、3【解析】分析:根据算术平方根的概念求解即可.详解:因为32=9所以=3.故答案为3.点睛:此题主要考查了算术平方根的意义,关键是确定被开方数是哪个正数的平方.22、(2,0)(0,4)【解析】把y=0代入y=2x+4得:0=2x+4,x=−2,令x=0,代入y=2x+4解得y=4,∴一次函数y=2x+4的图象与y轴交点坐标这(0,4),即一次函数y=2x+4与x轴的交点坐标是(−2,0),与y轴交点坐标这(0,4).23、2或-1.【解析】①∵--,∴min{-,-}=-;②∵min{(x−1)2,x2}=1,∴当x>0.5时,(x−1)2=1,∴x−1=±1,∴x−1=1,x−1=−1,解得:x1=2,x2=0(不合题意,舍去),当x⩽0.5时,x2=1,解得:x1=1(不合题意,舍去),x2=−1,二、解答题(本大题共3个小题,共30分)24、20°【解析】

由旋转的性质可得∠AED=∠ACB=40°,∠BAD=∠DAE,AB=AD,AC=AE,又因为DE∥AB,所以∠BAD=∠ADE,列出方程求解可得出∠BAD=60°,所以∠ACE=∠AEC=60°,∠DEC=∠AEC-∠AED=60°-40°=20°【详解】解:∵将△ABC绕点A按逆时针方向旋转后得△ADE,∴∠AED=∠ACB=40°,∠BAD=∠DAE,AB=AD,AC=AE,∴∠ABD=∠ADB,∠ACE=∠AEC,∵DE∥AB,∴∠BAD=∠ADE设∠BAD=x,∠ABD=y,=z,可列方程组:∴解得:x=60°即∠BAD=60°∴∠ACE=∠AEC=60°∴∠DEC=∠AEC-∠AED=60°-40°=20°此题考查了旋转的性质以及

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论