版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页江苏省南通市海安市曲塘中学2024-2025学年数学九年级第一学期开学联考模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若(x+y)3-xy(x+y)=(x+y)·M(x+y≠0),则M是()A.x2+y2B.x2-xy+y2C.x2-3xy+y2D.x2+xy+y22、(4分)如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(A.(14,-1) B.(14,0) C.(3、(4分)下列二次根式中属于最简二次根式的是()A. B. C. D.4、(4分)测得某人一根头发的直径约为0.0000715米,该数用科学记数法可表示为()A.0.715×104 B.0.715×10﹣4 C.7.15×105 D.7.15×10﹣55、(4分)如图,四边形中,与不平行,分别是的中点,,,则的长不可能是()A.1.5 B.2 C.2.5 D.36、(4分)若一个多边形的内角和是外角和的5倍,则这个多边形的边数是()A.12 B.10 C.8 D.117、(4分)在,,,高,则BC的长是()A.14 B.4 C.4或14 D.7或138、(4分)对于函数,下列结论正确的是()A.它的图象必经过点(-1,1) B.它的图象不经过第三象限C.当时, D.的值随值的增大而增大二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为_____.10、(4分)若,则=_______________.11、(4分)已知.若整数满足.则=_________.12、(4分)已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是.13、(4分)实施素质教育以来,某中学立足于学生的终身发展,大力开发课程资源,在七年级设立六个课外学习小组,下面是七年级学生参加六个学习小组的统计表和扇形统计图,请你根据图表中提供的信息回答下列问题.学习小组
体育
美术
科技
音乐
写作
奥数
人数
72
36
54
18
(1)七年级共有学生人;(2)在表格中的空格处填上相应的数字;(3)表格中所提供的六个数据的中位数是;(4)众数是.三、解答题(本大题共5个小题,共48分)14、(12分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.(1)求证:四边形ACDF是平行四边形;(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.15、(8分)如图,直线的函数解析式为,且与轴交于点,直线经过点、,直线、交于点.(1)求直线的函数解析式;(2)求的面积;(3)在直线上是否存在点,使得面积是面积的倍?如果存在,请求出坐标;如果不存在,请说明理由.16、(8分)某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B出发,沿轨道到达C处,在AC上,甲的速度是乙的速度的1.5倍,设t分后甲、乙两遥控车与B处的距离分别为d1,d2(单位:米),则d1,d2与t的函数关系如图,试根据图象解决下列问题.(1)填空:乙的速度v2=________米/分;
(2)写出d1与t的函数表达式;(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探究什么时间两遥控车的信号不会产生相互干扰?17、(10分)解下列方程:18、(10分)如图,四边形ABCD是正方形,点E是BC边上的点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)如图①,当点E是BC边上任一点(不与点B、C重合)时,求证:AE=EF.(2)如图②当点E是BC边的延长线上一点时,(1)中的结论还成立吗?(填成立或者不成立).(3)当点E是BC边上任一点(不与点B、C重合)时,若已知AE=EF,那么∠AEF的度数是否发生变化?证明你的结论.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,已知正方形纸片ABCD,M,N分别是AD、BC的中点,把BC边向上翻折,使点C恰好落在MN上的P点处,BQ为折痕,则∠BPN=_____度.20、(4分)如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上,若AC=,∠B=60°,则CD的长为_____.21、(4分)如果a+b=8,a﹣b=﹣5,则a2﹣b2的值为_____.22、(4分)如图,△ABC中,∠B=90°,AB=6,BC=8,将△ABC沿DE折叠,使点C落在AB边的C′处,并且C′D∥BC,则CD的长是________.23、(4分)直角三角形的三边长分别为、、,若,,则__________.二、解答题(本大题共3个小题,共30分)24、(8分)一次函数y=kx+b的图象与x、y轴分别交于点A(2,0),B(0,4).(1)求该函数的解析式;(2)O为坐标原点,设OA、AB的中点分别为C、D,P为OB上一动点,求PC+PD的最小值,并求取得最小值时P点的坐标.25、(10分)如图,在平面直角坐标系xOy中,一次函y=kx+b的图象经过点A(-2,4),且与正比例函数的图象交于点B(a,2).(1)求a的值及一次函数y=kx+b的解析式;(2)若一次函数y=kx+b的图象与x轴交于点C,且正比例函数y=-x的图象向下平移m(m>0)个单位长度后经过点C,求m的值;(3)直接写出关于x的不等式0<<kx+b的解集.26、(12分)先化简,再求值:,其中是方程的解.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】分析:运用提公因式法将等式左边的多项式进行因式分解即可求解.详解:(x+y)3-xy(x+y)=(x+y)[(x+y)2-xy]=(x+y)(x2+xy+y2)=(x+y)·M∴M=x2+xy+y2故选D.点睛:此题主要考查了提取公因式法的应用以及完全平方公式的应用,正确运用(x+y)2=x2+2xy+y2是解题关键.2、D【解析】
从图中可以看出横坐标为1的有一个点,横坐标为2的有2个点,横坐标为3的有3个点,…依此类推横坐标为n的有n个点.题目要求写出第100个点的坐标,我们可以通过加法计算算出第100个点位于第几列第几行,然后对应得出坐标规律,将行列数代入规律式.【详解】在横坐标上,第一列有一个点,第二列有2个点…第n个有n个点,并且奇数列点数对称而偶数列点数y轴上方比下方多一个,所以奇数列的坐标为n,n-1偶数列的坐标为n,n由加法推算可得到第100个点位于第14列自上而下第六行.代入上式得(14,142-5)故选D.本题是一道找规律题,主要考查了点的规律.培养学生对坐平面直角坐标系的熟练运用能力是解题的关键.3、A【解析】
利用最简二次根式定义判断即可.【详解】A、,是最简二次根式,符合题意;B、,不是最简二次根式,不符合题意;C、,不是最简二次根式,不合题意;D、,,不是最简二次根式,不合题意.故选A.本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.4、D【解析】0.0000715=,故选D.5、D【解析】
连接BD,取BD的中点G,连接MG、NG,根据三角形的中位线平行于第三边并且等于第三边的一半可得AB=2MG,DC=2NG,再根据三角形的任意两边之和大于第三边得出MN<(AB+DC),即可得出结果.【详解】解:如图,连接BD,取BD的中点G,连接MG、NG,∵点M,N分别是AD、BC的中点,∴MG是△ABD的中位线,NG是△BCD的中位线,∴AB=2MG,DC=2NG,∴AB+DC=2(MG+NG),由三角形的三边关系,MG+NG>MN,∴AB+DC>2MN,∴MN<(AB+DC),∴MN<3;故选:D.本题考查了三角形的中位线定理,三角形的三边关系;根据不等关系考虑作辅助线,构造成以MN为一边的三角形是解题的关键.6、A【解析】
根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】设这个多边形是n边形,根据题意得,(n﹣2)•180°=5×360°,解得n=1.故选:A.本题考查了多边形的内角和公式与外角和定理,熟练掌握多边形的内角和公式与外角和定理是解题的关键.7、C【解析】
分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD−BD.【详解】解:(1)如图锐角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2−AD2=152−122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得CD2=AC2−AD2=132−122=25,∴CD=5,∴BC的长为BD+DC=9+5=11;(2)如图钝角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2−AD2=152−122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得:CD2=AC2−AD2=132−122=25,∴CD=5,∴BC的长为DC−BD=9−5=1.故BC长为11或1.故选:C.本题考查了勾股定理,把三角形斜边转化到直角三角形中用勾股定理解答.掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.8、B【解析】
将x=-1代入一次函数解析式求出y值即可得出A错误;由一次函数解析式结合一次函数系数与图象的关系即可得出B正确;求出一次函数与x轴的交点即可得出C错误;由一次函数一次项系数k=-3<0即可得出D不正确.此题得解.【详解】A、令y=-3x+4中x=-1,则y=8,∴该函数的图象不经过点(-1,1),即A错误;B、∵在y=-3x+4中k=-3<0,b=4>0,∴该函数图象经过第一、二、四象限,即B正确;C、令y=-3x+4中y=0,则-3x+4=0,解得:x=,∴该函数的图象与x轴的交点坐标为(,0),∴当x<时,y>0,故C错误;D、∵在y=-3x+4中k=-3<0,∴y的值随x的值的增大而减小,即D不正确.故选:B.本题考查了一次函数的性质以及一次函数图象与系数的关系,解题的关键是逐条分析四个选项.本题属于基础题,难度不大,解决该题时,熟悉一次函数的性质、一次函数图象上点的坐标特征以及一次函数图象与系数的关系是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、2【解析】
解:这组数据的平均数为2,
有(2+2+0-2+x+2)=2,
可求得x=2.
将这组数据从小到大重新排列后,观察数据可知最中间的两个数是2与2,
其平均数即中位数是(2+2)÷2=2.
故答案是:2.10、36【解析】【分析】根据积的乘方的运算法则即可得.【详解】因为,所以=·=4×9=36,故答案为36.【点睛】本题考查了幂的乘方和积的乘方的应用,用了整体代入思想.11、2【解析】
根据题意可知m-3≤0,被开方数是非负数列不等式组可得m的取值,又根据,表示m的值代入不等式的解集中可得结论.【详解】解:,∴解得:.∵为整数,.∴∴故答案为:2;本题考查了二次根式的性质和估算、不等式组的解法,有难度,能正确表示m的值是本题的关键.12、15.6【解析】试题分析:此题考查了折线统计图和中位数,掌握中位数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.把这些数从小到大排列为:4.5,10.5,15.3,15.9,19.6,20.1,最中间的两个数的平均数是(15.3+15.9)÷2=15.6(℃),则这六个整点时气温的中位数是15.6℃.考点:折线统计图;中位数13、(1)360;(2)1,108,20%;(3)63;(4)1.【解析】解:(1)读图可知:有10%的学生即36人参加科技学习小组,故七年级共有学生:36÷10%=360(人).故答案为360;(2)统计图中美术占:1﹣30%﹣20%﹣10%﹣15%﹣5%=20%,参加美术学习小组的有:360×(1﹣30%﹣20%﹣10%﹣15%﹣5%)=360×20%=1(人),奥数小组的有360×30%=108(人);学习小组
体育
美术
科技
音乐
写作
奥数
人数
1
1
36
54
18
108
故答案为1,108,20%;(3)(4)从小到大排列:18,36,54,1,1,108故众数是1,中位数=(54+1)÷2=63;故答案为63,1.三、解答题(本大题共5个小题,共48分)14、(1)证明见解析;(2)BC=2CD,理由见解析.【解析】分析:(1)利用矩形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF是平行四边形;(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD.详解:(1)∵四边形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中点,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE,∴CD=FA,又∵CD∥AF,∴四边形ACDF是平行四边形;(2)BC=2CD.证明:∵CF平分∠BCD,∴∠DCE=45°,∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中点,∴AD=2CD,∵AD=BC,∴BC=2CD.点睛:本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.15、(1);(2)3;(3)在直线上存在点或,使得面积是面积的倍.【解析】
(1)根据点A、B的坐标利用待定系数法即可求出直线l2的函数解析式;
(2)令y=-2x+4=0求出x值,即可得出点D的坐标,联立两直线解析式成方程组,解方程组即可得出点C的坐标,再根据三角形的面积即可得出结论;
(3)假设存在点P,使得△ADP面积是△ADC面积的1.5倍,根据两三角形面积间的关系|yP|=1.5|yC|=3,再根据一次函数图象上点的坐标特征即可求出点P的坐标.【详解】解:(1)设直线的函数解析式为,将、代入,,解得:,直线的函数解析式为.(2)联立两直线解析式成方程组,,解得:,点的坐标为.当时,,点的坐标为..(3)假设存在.面积是面积的倍,,当时,,此时点的坐标为;当时,,此时点的坐标为.综上所述:在直线上存在点或,使得面积是面积的倍.故答案为(1);(2)3;(3)在直线上存在点或,使得面积是面积的倍.本题考查两条直线相交或平行问题、一次函数图象上点的坐标特征以及待定系数法求一次函数解析式,根据给定点的坐标利用待定系数法求出函数解析式是解题的关键.16、(2)40;(2)当0≤t≤2时,d2=﹣60t+60;当2<t≤3时,d2=60t﹣60;(3)当0≤t<2.5时,两遥控车的信号不会产生相互干扰.【解析】
(2)根据路程与时间的关系,可得答案;(2)根据甲的速度是乙的速度的2.5倍,可得甲的速度,根据路程与时间的关系,可得a的值,根据待定系数法,可得答案;(3)根据两车的距离,可得不等式,根据解不等式,可得答案.【详解】(2)乙的速度v2=220÷3=40(米/分),(2)v2=2.5v2=2.5×40=60(米/分),60÷60=2(分钟),a=2,d2=;(3)d2=40t,当0≤t<2时,d2-d2>20,即-60t+60+40t>20,解得0≤t<2.5,∵0≤t<2,∴当0≤t<2时,两遥控车的信号不会产生相互干扰;当2≤t≤3时,d2-d2>20,即40t-(60t-60)>20,当2≤t<时,两遥控车的信号不会产生相互干扰综上所述:当0≤t<2.5时,两遥控车的信号不会产生相互干扰.17、x1=5,x2=1.【解析】
移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】x2-10x+25=2(x-5),
(x-5)2-2(x-5)=0,
(x-5)(x-5-2)=0,
x-5=0,x-5-2=0,
x1=5,x2=1.本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.18、(1)见解析;(2)成立,理由见解析;(3)∠AEF=90°不发生变化.理由见解析.【解析】
(1)在AB上取点G,使得BG=BE,连接EG,根据已知条件利用ASA判定△AGE≌△ECF,因为全等三角形的对应边相等,所以AE=EF;(2)在BA的延长线上取一点G,使AG=CE,连接EG,根据已知利用ASA判定△AGE≌△ECF,因为全等三角形的对应边相等,所以AE=EF;(3)在BA边取一点G,使BG=BE,连接EG.作AP⊥EG,EQ⊥FC,先证AGP≌△ECQ得AP=EQ,再证Rt△AEP≌Rt△EFQ得∠AEP=∠EFQ,∠BAE=∠CEF,结合∠AEB+∠BAE=90°知∠AEB+∠CEF=90°,从而得出答案.【详解】(1)证明:在BA边取一点G,使BG=BE,连接EG,∵四边形ABCD是正方形,∴∠B=90°,BA=BC,∠DCM═90°,∴BA-BG=BC-BE,即
AG=CE.∵∠AEF=90°,∠B=90°,∴∠AEB+∠CEF=90°,∠AEB+∠BAE=90°,∴∠CEF=∠BAE.∵BG=BE,CF平分∠DCM,∴∠BGE=∠FCM=45°,∴∠AGE=∠ECF=135°,∴△AGE≌△ECF(ASA),∴AE=EF.(2)成立,理由:在BA的延长线上取点G,使得AG=CE,连接EG.∵四边形ABCD为正方形,AG=CE,∴∠B=90°,BG=BE,∴△BEG为等腰直角三角形,∴∠G=45°,又∵CF为正方形的外角平分线,∴∠ECF=45°,∴∠G=∠ECF=45°,∵∠AEF=90°,∴∠FEM=90°-∠AEB,又∵∠BAE=90°-∠AEB,∴∠FEM=∠BAE,∴∠GAE=∠CEF,在△AGE和△ECF中,∵,∴△AGE≌△ECF(ASA),∴AE=EF.故答案为:成立.(3)∠AEF=90°不发生变化.理由如下:在BA边取一点G,使BG=BE,连接EG.分别过点A、E作AP⊥EG,EQ⊥FC,垂足分别为点P、Q,∴∠APG=∠EQC=90°,由(1)中知,AG=CE,∠AGE=∠ECF=135°,∴∠AGP=∠ECQ=45°,∴△AGP≌△ECQ(AAS),∴AP=EQ,∴Rt△AEP≌Rt△EFQ(HL),∴∠AEP=∠EFQ,∴∠BAE=∠CEF,又∵∠AEB+∠BAE=90°,∴∠AEB+∠CEF=90°,∴∠AEF=90°.此题是四边形综合题,主要考查的是正方形的性质、全等三角形的判定和性质,正确作出辅助线、灵活运用全等三角形的判定定理和性质定理是解题的关键,解答时,注意类比思想的正确运用.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】
根据折叠的性质知:可知:BN=BP,再根据∠BNP=90°即可求得∠BPN的值.【详解】根据折叠的性质知:BP=BC,∴BN=BC=BP,∵∠BNP=90°,∴∠BPN=1°,故答案为:1.本题考查了正方形的性质、翻折变换(折叠问题)等知识,熟练掌握相关的性质及定理是解题的关键.20、1【解析】
试题分析:∵直角△ABC中,AC=,∠B=60°,∴AB==1,BC==2,又∵AD=AB,∠B=60°,∴△ABD是等边三角形,∴BD=AB=1,∴CD=BC﹣BD=2﹣1=1.故答案是:1.考点:旋转的性质.21、-1【解析】
根据平方差公式求出即可.【详解】解:∵a+b=8,a﹣b=﹣5,∴a2﹣b2=(a+b)(a﹣b)),=8×(﹣5),=﹣1,故答案为:﹣1.本题主要考查了乘法公式的应用,准确应用平方差公式和完全平方公式是解题的关键.22、【解析】
解:设CD=x,根据C′D∥BC,且有C′D=EC,可得四边形C′DCE是菱形;即Rt△BC′E中,AC==10,EB=x;故可得BC=x+x=8;解得x=.23、或5【解析】
根据斜边分类讨论,然后利用勾股定理分别求出c的值即可.【详解】解:①若b是斜边长根据勾股定理可得:②若c是斜边长根据勾股定理可得:综上所述:或5故答案为:或5此题考查的是勾股定理,掌握用勾股定理解直角三角形和分类讨论的数学思想是解决此题的关键.二、解答题(本大题共3个小题,共30分)24、(1)y=-2x+1;(2)22;点P的坐标为(0,1).【解析】试题分析:(1)、将A、B两点的坐标代入解析式求出k和b的值,从而得出函数解析式;(2)、首先得出点C关于y轴的对称点为C′,然后得出点D的坐标,根据C′、D的坐标求出直线C′D的解析式,从而
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度框架合同补充条款的重要性3篇
- 二零二五年度KTV会员积分奖励制度合同范本3篇
- 2024版文化创意产业孵化器运营管理合同
- 二零二五年度医疗废物无害化处理服务合同9篇
- 2024年虚拟现实旅游内容制作服务合同
- 2025年度物流服务质量监控供应商合同3篇
- 2024版私立学校试读阶段合作合同版B版
- 2024年自动驾驶汽车技术转让合同
- 2024年电梯增设免责协议标准格式版B版
- 2024年项目合作与融资合同
- 东南大学医学三基考试外科选择题及答案
- TZJASE 005-2021 非道路移动柴油机械(叉车)排气烟度 检验规则及方法
- GB/T 31989-2015高压电力用户用电安全
- CB/T 749-1997固定钢质百叶窗
- 大佛顶首楞严经浅释
- 品牌(商标)授权书(中英文模板)
- 行动销售(最新版)课件
- 船舶轴系与轴系布置设计课件
- 学校学生评教表
- 晚宴活动拉斯维加斯之夜策划方案
- 配电室巡检表
评论
0/150
提交评论