版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省揭阳普宁市2025届高二上数学期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.《九章算术》中的“商功”篇主要讲述了以立体几何为主的各种形体体积的计算,其中堑堵是指底面为直角三角形的直棱柱.如图,在堑堵中,M是的中点,,,,若,则()A. B.C. D.2.已知随机变量服从正态分布,若,则()A.0.2 B.0.24C.0.28 D.0.323.如图,在直三棱柱中,D为棱的中点,,,,则异面直线CD与所成角的余弦值为()A. B.C. D.4.年底以来,我国多次在重要场合和政策文件中提及碳中和,碳中和指的是二氧化碳排放量和吸收量可以正负抵消,实现二氧化碳“零排放”.二氧化碳的分子是由一个碳原子和两个氧原子构成的,其结构式为.已知氧有、、三种天然同位素,碳有、、三种天然同位素,则由上述同位素可构成的不同二氧化碳分子共有()A.种 B.种C.种 D.种5.已知为等比数列的前n项和,,,则()A.30 B.C. D.30或6.直线的倾斜角为A. B.C. D.7.已知分别是椭圆的左,右焦点,点M是椭圆C上的一点,且的面积为1,则椭圆C的短轴长为()A.1 B.2C. D.48.如下图,面与面所成二面角的大小为,且A,B为其棱上两点.直线AC,BD分别在这个二面角的两个半平面中,且都垂直于AB,已知,,,则()A. B.C. D.9.命题“,”否定是()A., B.,C., D.,10.过点作圆的切线,则切线的方程为()A. B.C.或 D.或11.已知两直线与,则与间的距离为()A. B.C. D.12.若,则的值为()A.或 B.或C.1 D.-1二、填空题:本题共4小题,每小题5分,共20分。13.等比数列的前n项和,则的通项公式为___________.14.已知数列满足,,则使得成立的n的最小值为__________.15.已知一个圆锥的底面半径为6,其体积为则该圆锥的侧面积为________.16.一个四面体有五条棱长均为2,则该四面体的体积最大值为_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某地从今年8月份开始启动12-14岁人群新冠肺炎疫苗的接种工作,共有8千人需要接种疫苗.前4周的累计接种人数统计如下表:前x周1234累计接种人数y(千人)2.5344.5(1)求y关于的线性回归方程;(2)根据(1)中所求的回归方程,预计该地第几周才能完成疫苗接种工作?参考公式:回归方程中斜率和截距的最小二乘估计公式分别为,18.(12分)如图,在长方体中,,.点E在上,且(1)求证:平面;(2)求二面角的余弦值19.(12分)某市对排污水进行综合治理,征收污水处理费,系统对各厂一个月内排出的污水量x吨收取的污水处理费y元,运行程序如图所示:INPUTxIFTHENELSEIFTHENELSEENDIFENDIFPRINTyEND(1)请写出y与x的函数关系式;(2)求排放污水150吨的污水处理费用.20.(12分)如图,在长方体中,,,是棱的中点(1)求证:;(2)求平面与平面夹角的余弦值;(3)在棱上是否存在一点,使得与平面所成角的正弦值为,若存在,求出的长;若不存在,请说明理由21.(12分)如图,在长方体中,,若点P为棱上一点,且,Q,R分别为棱上的点,且.(1)求直线与平面所成角的正弦值;(2)求平面与平面的夹角的余弦值.22.(10分)已知圆:,点A是圆上一动点,点,点是线段的中点.(1)求点的轨迹方程;(2)直线过点且与点的轨迹交于A,两点,若,求直线的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】建立坐标系,坐标表示向量,求出点坐标,进而求出结果.【详解】以为坐标原点,,,的方向分别为x,y,z轴的正方向建立空间直角坐标系.不妨令,则,,,,,.因为,所以,则,,,,则解得,,,故.故选:C2、C【解析】依据正态曲线的对称性即可求得【详解】由随机变量服从正态分布,可知正态曲线的对称轴为直线由,可得则,故故选:C3、A【解析】以C为坐标原点,分别以,,方向为x,y,z轴的正方向,建立如图所示的空间直角坐标系.运用异面直线的空间向量求解方法,可求得答案.【详解】解:以C为坐标原点,分别以,,的方向为x,y,z轴的正方向,建立如图所示的空间直角坐标系.由已知可得,,,,则,,所以.又因为异面直线所成的角的范围为,所以异面直线与所成角的余弦值为.故选:A.4、C【解析】分两种情况讨论:两个氧原子相同、两个氧原子不同,分别计算出两种情况下二氧化碳分子的个数,利用分类加法计数原理可得结果.【详解】分以下两种情况讨论:若两个氧原子相同,此时二氧化碳分子共有种;若两个氧原子不同,此时二氧化碳分子共有种.由分类加法计数原理可知,由上述同位素可构成的不同二氧化碳分子共有种.故选:C.5、A【解析】利用等比数列基本量代换代入,列方程组,即可求解.【详解】由得,则等比数列的公比,则得,令,则即,解得或(舍去),,则故选:A6、B【解析】分析出直线与轴垂直,据此可得出该直线的倾斜角.【详解】由题意可知,直线与轴垂直,该直线的倾斜角为.故选:B.【点睛】本题考查直线的倾斜角,关键是掌握直线倾斜角的定义,属于基础题7、B【解析】首先分别设,,再根据椭圆的定义和性质列出等式,即可求解椭圆的短轴长.【详解】设,,所以,即,即,得,短轴长为.故选:B8、B【解析】根据题意,作,且,则四边形ABDE为平行四边形,进一步判断出该四边形为矩形,然后确定出为二面角的平面角,进而通过余弦定理和勾股定理求得答案.【详解】如图,作,且,则四边形ABDE为平行四边形,所以.因为,所以,又,所以是该二面角的一个平面角,即,由余弦定理.因为,,所以,易得四边形ABDE为矩形,则,而,所以平面ACE,则,于是.故选:B.9、D【解析】根据含有量词的命题的否定即可得出结论.【详解】命题为全称命题,则命题的否定为:,.故选:D.10、C【解析】设切线的方程为,然后利用圆心到直线的距离等于半径建立方程求解即可.【详解】圆的圆心为原点,半径为1,当切线的斜率不存在时,即直线的方程为,不与圆相切,当切线的斜率存在时,设切线的方程为,即所以,解得或所以切线的方程为或故选:C11、B【解析】把直线的方程化简,再利用平行线间距离公式直接计算得解.【详解】直线的方程化为:,显然,,所以与间的距离为.故选:B12、B【解析】求出函数的导数,由方程求解即可.【详解】,,解得或,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用的关系,结合是等比数列,即可求得结果.【详解】因为,故当时,,则,又当时,,因为是等比数列,故也满足,即,故,此时满足,则.故答案为:.14、11【解析】由题设可得,结合等比数列的定义知从第二项开始是公比为2的等比数列,进而写出的通项公式,即可求使成立的最小值n.【详解】因为,所以,两式相除得,整理得.因为,故从第二项开始是等比数列,且公比为2,因为,则,所以,则,由得:,故故答案为:11.15、【解析】利用体积公式求出圆锥的高,进一步求出母线长,最终利用侧面积公式求出答案.【详解】∵∴∴∴.故答案为:.16、1【解析】由已知中一个四面体有五条棱长都等于2,易得该四面体必然有两个面为等边三角形,根据棱锥的几何特征,分析出当这两个平面垂直时,该四面体的体积最大,将相关几何量代入棱锥体积公式,即可得到答案【详解】一个四面体有五条棱长都等于2,如下图:设除PC外的棱均为2,设P到平面ABC距离为h,则三棱锥的体积V=,∵是定值,∴当P到平面ABC距离h最大时,三棱锥体积最大,故当平面PAB⊥平面ABC时,三棱锥体积最大,此时h为等边三角形PAB的AB边上的高,则h,故三棱锥体积的最大值为:故答案为:1三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)预计第9周才能完成接种工作【解析】(1)利用最小二乘法原理求解即可;(2)解方程即得解.【小问1详解】解:由表中数据得,,,,.所以所以y关于的线性回归方程为.【小问2详解】解:令,解得.所以预计第9周才能完成接种工作.18、(1)证明见解析(2)【解析】(1)建立空间直角坐标系,分别写出,,的坐标,证明,,即可得证;(2)由(1)知,的法向量为,直接写出平面法向量,按照公式求解即可.【小问1详解】在长方体中,以为坐标原点,所在直线分别为轴,轴,轴建立如图所示空间直角坐标系因为,,所以,,,,,则,,,所以有,,则,,又所以平面小问2详解】由(1)知平面的法向量为,而平面法向量为所以,由图知二面角为锐二面角,所以二面角的余弦值为19、(1);(2)1400(元).【解析】(1)根据已知条件即可容易求得函数关系式;(2)根据(1)中所求函数关系式,令,求得函数值即可.【小问1详解】根据题意,得:当时,;当时,;当时,.即.【小问2详解】因为,故,故该厂应缴纳污水处理费1400元.20、(1)证明见解析(2)(3)存点,【解析】(1)先证明平面,由平面,可证明结论.(2)以分别为轴,建立空间直角坐标系,分别求出平面与平面的法向量,利用向量法求求解即可.(3)设,,则,则由向量法结合条件可得答案.【详解】(1)在长方体中,,又,所以平面又平面,所以.(2)以分别为轴,建立空间直角坐标系因为,,是棱的中点则则为平面的一个法向量.设为平面的一个法向量.,所以,即取,可得所以如图平面与平面夹角为锐角,所以平面与平面夹角的余弦值为.(3)设,,则由(2)平面的一个法向量设与平面所成角为则解得,取所以存在点,满足条件.21、(1)(2)【解析】(1)建立如图所示的空间直角坐标系,用空间向量法求线面角;(2)用空间向量法求二面角【小问1详解】以D为坐标原点,射线方向为x,y,z轴正方向建立空间直角坐标系.当时,,所以,设平面的法向量为,所以,即不妨得,,又,所以,则【小问2详解】在长方体中,因为平面,所以平面平面,因为平面与平面交于,因为四边形为正方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年简化离婚合同:不含抚养费条款版B版
- 2024年电机维修质量保证合同3篇
- 2024年土地流转及农业科技园区综合服务体系建设合同范本3篇
- 2024名画抵押贷款业务管理合同3篇
- 2024年核能发电项目建设与运营合同
- 2024年版权共有合同样本:创意内容共享协议3篇
- 2024年土地承包权转租合同终止执行3篇
- 2024年物联网技术在智能交通领域的应用合同
- 2024年度房地产合作开发合同-二零二四年度绿色建筑认证2篇
- 2024年电信行业标准制定与推广合同
- 养生餐厅调查研究报告
- 临床医学研究进展展望新兴领域与发展趋势培训课件
- 北京市2022-2023学年三年级上学期语文期末试卷(含答案)2
- 2023-2024年三年级上册科学(教科版) 期末模拟试卷(三)(含解析)
- 消防爬梯施工方案
- 关于工程师思维素养课件
- 昆虫记32种昆虫简介
- 短视频平台私域建设研究报告
- 工业风扇-专业介绍
- 23秋国家开放大学《广告设计》形考任务1-4参考答案
- 污水处理厂有毒有害气体检测记录表
评论
0/150
提交评论