2025届湖南邵阳县德望中学数学高二上期末复习检测试题含解析_第1页
2025届湖南邵阳县德望中学数学高二上期末复习检测试题含解析_第2页
2025届湖南邵阳县德望中学数学高二上期末复习检测试题含解析_第3页
2025届湖南邵阳县德望中学数学高二上期末复习检测试题含解析_第4页
2025届湖南邵阳县德望中学数学高二上期末复习检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖南邵阳县德望中学数学高二上期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.南宋数学家杨辉所著的《详解九章算法》中有如下俯视图所示的几何体,后人称之为“三角垛”.其最上层有1个球,第二层有3个球,第三层有6个球,…,则第十层球的个数为()A.45 B.55C.90 D.1102.若圆与圆外切,则()A. B.C. D.3.已知空间向量,,,下列命题中正确的个数是()①若与共线,与共线,则与共线;②若,,非零且共面,则它们所在的直线共面;⑧若,,不共面,那么对任意一个空间向量,存在唯一有序实数组,使得;④若,不共线,向量,则可以构成空间的一个基底.A.0 B.1C.2 D.34.已知在等比数列中,,,则()A.9或 B.9C.27或 D.275.已知直线经过点,且是的方向向量,则点到的距离为()A. B.C. D.6.已知空间向量,且与垂直,则等于()A.-2 B.-1C.1 D.27.已知两条异面直线的方向向量分别是,,则这两条异面直线所成的角满足()A. B.C. D.8.如图,在空间四边形中,()A. B.C. D.9.已知函数的导函数满足,则()A. B.C.3 D.410.已知等比数列,且,则()A.16 B.32C.24 D.6411.在等比数列中,,,则等于()A.90 B.30C.70 D.4012.已知实数满足方程,则的最大值为()A.3 B.2C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知直线l:和圆C:,过直线l上一点P作圆C的一条切线,切点为A,则的最小值为______14.已知向量,,若与垂直,则___________.15.已知三棱锥的四个顶点在球的球面上,,是边长为正三角形,分别是的中点,,则球的体积为_________________16.若不同的平面的一个法向量分别为,,则与的位置关系为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系xOy中,已知椭圆的左、右焦点分别是,,离心率,请再从下面两个条件中选择一个作为已知条件,完成下面的问题:①椭圆C过点;②以点为圆心,3为半径的圆与以点为圆心,1为半径的圆相交,且交点在椭圆C上(只能从①②中选择一个作为已知)(1)求椭圆C的方程;(2)已知过点的直线l交椭圆C于M,N两点,点N关于x轴的对称点为,且,M,三点构成一个三角形,求证:直线过定点,并求面积的最大值.18.(12分)设数列的前n项和为,且,数列(1)求和的通项公式;(2)设数列的前n项和为,证明:19.(12分)如图,菱形的边长为4,,矩形的面积为8,且平面平面(1)证明:;(2)求C到平面的距离.20.(12分)已知圆过点且与圆外切于点,直线将圆分成弧长之比为的两段圆弧(1)求圆的标准方程;(2)直线的斜率21.(12分)已知数列满足,,,n为正整数.(1)证明:数列是等比数列,并求通项公式;(2)证明:数列中的任意三项,,都不成等差数列;(3)若关于正整数n的不等式的解集中有且仅有三个元素,求实数m的取值范围;22.(10分)已知三角形的内角所对的边分别为,且C为钝角.(1)求cosA;(2)若,,求三角形的面积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据题意,发现规律并将规律表达出来,第层有个球.【详解】根据规律,可以得知:第一层有个球;第二层有个球;第三层有个球,则根据规律可知:第层有个球设第层的小球个数为,则有:故第十层球的个数为:故选:2、C【解析】求得两圆的圆心坐标和半径,结合两圆相外切,列出方程,即可求解.【详解】由题意,圆与圆可得,,因为两圆相外切,可得,解得故选:C.3、B【解析】用向量共线或共面的基本定理即可判断.【详解】若与,与共线,,则不能判定,故①错误;若非零向量共面,则向量可以在一个与组成的平面平行的平面上,故②错误;不共面,意味着它们都是非零向量,可以作为一组基底,故③正确;,∴与共面,故不能组成一个基底,故④错误;故选:C.4、B【解析】根据等比数列的性质可求.【详解】因为为等比数列,设公比为,则,解得,又,所以.故选:B.5、B【解析】求出,根据点到直线的距离的向量公式进行求解.【详解】因为,为的一个方向向量,所以点到直线的距离.故选:B6、B【解析】直接利用空间向量垂直的坐标运算即可解决.【详解】∵∴∴,解得,故选:B.7、D【解析】利用向量夹角余弦公式直接求解【详解】解:两条异面直线的方向向量分别是,,这两条异面直线所成的角满足:,,故选:D8、A【解析】利用空间向量加减法法则直接运算即可.【详解】根据向量的加法、减法法则得.故选:A.9、C【解析】先对函数求导,再由,可求出的关系式,然后求【详解】由,得,因为,所以,所以,故选:C10、A【解析】由等比数列的定义先求出公比,然后可解..【详解】,得故选:A11、D【解析】根据等比数列的通项公式即可求出答案.【详解】设该等比数列的公比为q,则,则.故选:D12、D【解析】将方程化为,由圆的几何性质可得答案.【详解】将方程变形为,则圆心坐标为,半径,则圆上的点的横坐标的范围为:则x的最大值是故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】求出圆C的圆心坐标、半径,再借助圆的切线性质及勾股定理列式计算作答.【详解】圆C:,圆心为,半径,点C到直线l的距离,由圆的切线性质知:,当且仅当,即点P是过点C作直线l的垂线的垂足时取“=”,所以的最小值为1故答案为:114、【解析】根据与垂直,可知,根据空间向量的数量积运算可求出的值,结合向量坐标求向量模的求法,即可得出结果.【详解】解:与垂直,,则,解得:,,则,.故答案为:.15、【解析】由已知设出,,,分别在中和在中运用余弦定理表示,得到关于x与y的关系式,再在中运用勾股定理得到关于x与y的又一关系式,联立可解得x,y,从而分析出正三棱锥是,,两两垂直的正三棱锥,所以三棱锥的外接球就是以为棱的正方体的外接球,再通过正方体的外接球的直径等于正方体的体对角线的长求出球的半径,再求出球的体积.【详解】在中,设,,,,,因为点,点分别是,的中点,所以,,在中,,在中,,整理得,因为是边长为的正三角形,所以,又因为,所以,由,解得,所以又因为是边长为的正三角形,所以,所以,所以,,两两垂直,则球为以为棱的正方体的外接球,则外接球直径为,所以球的体积为,故答案为.【点睛】本题主要考查空间几何体的外接球的体积,破解关键在于熟悉正三棱锥的结构特征,运用解三角形的正弦定理和余弦定理得出三棱锥的棱的关系,继而分析出正三棱锥的外接球是以正三棱锥中互相垂直的三条棱为棱的正方体的外接球,利用正方体的外接球的直径等于正方体的体对角线的长求解更方便快捷,属于中档题16、平行【解析】根据题意得到,得出,即可得到平面与的位置关系.【详解】由题意,平面的一个法向量分别为,,可得,所以,所以,即平面与的位置关系为平行.故答案为:平行三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析,【解析】(1)若选①,则由题意可得,解方程组求出,从而可求得椭圆方程,若选②,,再结合离心率和求出,从而可求得椭圆方程,(2)由题意设直线MN的方程为,设,,,将直线方程代入椭圆方程中,消去,再利用根与系数的关系,表示出直线的方程,令,求出,结合前面的式子化简可得线过的定点,表示出的面积,利用基本不等式可求得其最大值【小问1详解】若选①:由题意知,∴.所以椭圆C的方程为.若选②:设圆与圆相交于点Q.由题意知:.又因为点Q在椭圆上,所以,∴.又因为,∴,∴.所以椭圆C的方程为.【小问2详解】由题易知直线MN斜率存在且不为0,因为,故设直线MN方程为,设,,,∴,∴,,因为点N关于x轴对称点为,所以,所以直线方程为,令,∴.又,∴.所以直线过定点,∴.当且仅当,即时,取等号.所以面积的最大值为.18、(1),(2)证明见解析【解析】(1)根据可得,从而可得;(2)利用错位相减法可得,从而可得,又,即可证明不等式成立.【小问1详解】解:∵,∴当时,,当时,,∴,经检验,也符合,∴,;【小问2详解】证明:因为,∴,∴∴,又∵,∴,所以19、(1)证明见解析.(2)【解析】(1)利用线面垂直的性质证明出;(2)利用等体积转换法,先求出O到平面AEF的距离,再求C到平面的距离.【小问1详解】在矩形中,.因为平面平面,平面平面,所以平面,所以.【小问2详解】设AC与BD的交点为O,则C到平面AEF的距离为O到平面AEF的距离的2倍.因为菱形ABCD的边长为4且,所以.因为矩形BDFE的面积为8,所以BE=2.,,则三棱锥的体积.在△AEF中,,所以.记O到平面AEF的距离为d.由得:,解得:,所以C到平面AEF的距离为.20、(1);(2).【解析】(1)分析可知圆心在轴上,可设圆心,根据圆过点、可得出关于的方程,求出的值,可得出圆心的坐标,进而可求得圆的半径,即可得出圆的标准方程;(2)利用几何关系可求得圆心到直线的距离为,再利用点到直线的距离公式可求得的值.【小问1详解】解:圆的圆心为,记点、,直线即为轴,因为圆与圆外切于点,则圆心在轴上,设圆心,由可得,解得,则圆心,所以,圆的半径为,因此,圆的标准方程为.【小问2详解】解:由题意可知,直线截圆所得的弦在圆上对应的圆心角为,则圆心到直线的距离为,由点到直线的距离公式可得,解得.21、(1)证明见解析;(2)证明见解析(3)【解析】(1)将所给等式变形为,根据等比数列的定义即可证明结论;(2)假设存在,,成等差数列,根据等差数列的性质可推出矛盾,故说明假设错误。从而证明原结论;(3)求出n=1,2,3,4时的情况,再结合时,,即可求得结果.【小问1详解】由已知可知,显然有,否则数列不可能是等比数列;因为,,故可得,由得:,即有,所以数列等比数列,且;【小问2详解】假设存在,,成等差数列,则,即,整理得,即,而是奇数,故上式左侧是奇数,右侧是一个偶数,不可能相等,故数列中的任意三项,,都不成等差

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论