版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题5.22相交线与平行线(全章知识梳理与考点分类讲解)【知识点1】对顶角、邻补角两直线相交所成的四个角中存在几种不同关系,它们的概念及性质如下表:图形顶点边的关系大小关系对顶角112∠1与∠2有公共顶点∠1的两边与∠2的两边互为反向延长线对顶角相等即∠1=∠2邻补角有公共顶点∠3与∠4有一条边公共,另一边互为反向延长线.邻补角互补即∠3+∠4=180°【知识点2】垂线及性质、点到直线的距离(1)垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足.如图1所示,符号语言记作:AB⊥CD,垂足为O.特别提醒:要判断两条直线是否垂直,只需看它们相交所成的四个角中,是否有一个角是直角,两条线段垂直,是指这两条线段所在的直线垂直.(2)垂线的性质:垂线性质1:在同一平面内,过一点有且只有一条直线与已知直线垂直(与平行公理相比较记).垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短.简称:垂线段最短.(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,如图2:PO⊥AB,点P到直线AB的距离是垂线段PO的长.特别提醒:垂线段PO是点P到直线AB所有线段中最短的一条.【知识点3】同位角、内错角与同旁内角角的名称位置特征图形结构特征同位角既在截线的同侧,又在两条被截线的同侧形如字母“F”(或倒置、反转、旋转)内错角既位于被截两直线之间,又位于截线两侧,即被截线“错开”形如字母“Z”(或倒置、反转、旋转)同旁内角既位于接线的同侧,又位于被截两直线之间.形如字母“U”(或倒置、反转、旋转)【知识点4】平行线的定义在同一平面内,不相交的两条直线叫做平行线,平行用符号“//”表示.【知识点5】平行线的画法一“落”:把三角尺一边落在已知直线上;二“靠”:用直尺紧靠三角尺的另一边;三“移”:沿直尺移动三角尺,使三角尺与已知直线重合的边过已知点;四“画”:沿三角尺过已知点的变化直线.【知识点6】平行公理1.平行公理:经过直线过一点,有且只有一条只限于这条直线平行.2.平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.【知识点7】平行线的判定判定方法1判定方法2判定方法3两条直线平行的判定两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行,即同位角相等,两直线平行两条直线被第三条直线所截,如果同位内角相等,那么这两条直线平行,即内错角相等,两直线平行两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,即同旁内角互补,两直线平行符号语言那么∠1=∠2那么AB//CD那么∠1=∠2那么AB//CD那么∠1+∠2=180°那么AB//CD【知识点8】平行线的性质性质1:两条平行线被第三条直线所截,同位角相等,即两直线平行,同位角相等.性质2:两条平行线被第三条直线所截,内错角相等,即两直线平行,同位角相等.性质3:两条平行线被第三条直线所截,同旁内角互补,即两直线平行,同旁内角互补.【知识点9】命题、定理、证明1.命题:判断一件事情的语句,叫做命题.
要点提醒:(1)命题的结构:每个命题都由题设、结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.(2)命题的表达形式:“如果……,那么…….”,也可写成:“若……,则…….”(3)真命题与假命题:真命题:题设成立结论一定成立的命题,叫做真命题.假命题:题设成立而不能保证结论一定成立的命题,叫做假命题.2.定理:定理是从真命题(公理或其他已被证明的定理)出发,经过推理证实得到的另一个真命题,定理也可以作为继续推理的依据.3.证明:在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明.要点提醒:(1)证明中的每一步推理都要有根据,不能“想当然”,这些根据可以是已知条件,学过的定义、基本事实、定理等.(2)判断一个命题是正确的,必须经过严格的证明;判断一个命题是假命题,只需列举一个反例即可.【知识点10】平移1.定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移.要点提醒:(1)图形的平移的两要素:平移的方向与平移的距离.(2)图形的平移不改变图形的形状与大小,只改变图形的位置.2.性质:图形的平移实质上是将图形上所有点沿同一方向移动相同的距离,平移不改变线段、角的大小,具体来说:(1)平移后,对应线段平行且相等;(2)平移后,对应角相等;(3)平移后,对应点所连线段平行且相等;(4)平移后,新图形与原图形是一对全等图形.要点提醒:(1)“连接各组对应点的线段”的线段的长度实际上就是平移的距离.(2)要注意“连接各组对应点的线段”与“对应线段”的区别,前者是通过连接平移前后的对应点得到的,而后者是原来的图形与平移后的图形上本身存在的.3.作图:平移作图是平移基本性质的应用,在具体作图时,应抓住作图的“四步曲”——定、找、移、连.(1)定:确定平移的方向和距离;(2)找:找出表示图形的关键点;(3)移:过关键点作平行且相等的线段,得到关键点的对应点;(4)连:按原图形顺次连接对应点.【考点一】三线八角【对顶角与邻补角】【例1】(2023上·黑龙江绥化·七年级校考阶段练习)如图,直线、相交于点O,,射线将分成两个角,且.(1)求的度数;(2)若平分,则是的平分线吗?判断并说明理由.【答案】(1);(2)OB是的平分线,理由见分析【分析】本题考查了几何图形中的角度计算,角平分线的定义:(1)由对顶角相等可得,再根据即可求解;(2)由邻补角的性质求得,再由角平分线的性质求得,即可得出结论.(1)解:,,,,;(2)解:是.理由如下:,,平分,,,,,,是的平分线.【举一反三】【变式1】(2023下·安徽合肥·七年级统考期末)如图,在灯塔处观测到轮船A位于北偏西的方向,轮船在的反向延长线的方向上,同时轮船在东南方向,则的大小为(
)A. B. C. D.【答案】C【分析】利用对顶角相等,可得轮船B在O的南偏东方向,然后进行计算即可解答.解:由题意知,轮船B在O的南偏东方向,,故选:C.【点拨】本题考查了方向角,根据题目的已知条件并结合图形分析是解题的关键.【变式2】(2023上·黑龙江绥化·七年级校考阶段练习)如图,点O在直线上,射线平分,若,则.【答案】/100度【分析】本题考查了角平分线的定义和邻补角的性质,根据角平分线的定义可得,再根据邻补角的性质即可求解.解:射线平分,,,,故答案为:.【同位角、内错角、同旁内角】【例2】(2019下·七年级课时练习)如图∠1、∠2、∠3、∠4、∠5中,哪些是同位角?哪些是内错角?哪些是同旁内角?【答案】同位角有∠1和∠5;∠4和∠3;内错角有∠2和∠3;∠1和∠4;同旁内角有∠3和∠5;∠4和∠5;∠4和∠2.【分析】同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.依此即可得出答案.解:∵∠1和∠5在截线AC同侧,在被截直线BE,CE同方向所成的角;∠4和∠3,在截线CE的上方,被截直线DB、EB的左侧,∴同位角有∠1和∠5;∠4和∠3,共2对;∵∠2和∠3在截线BD两侧,被截直线AC与CE内部;∠1和∠4在截线BE两侧,被截直线AC与CE内部,∴内错角有∠2和∠3;∠1和∠4,共2对;∵∠3和∠5在截线CD同侧,被截直线CB与DB内部;∠4和∠5在截线CE同侧,被截直线CB与EB的内部;∠4和∠2在截线BE同侧,被截直线DB与DE的内部,∴同旁内角有∠3和∠5;∠4和∠5;∠4和∠2,共3对.【点拨】本题考查了同位角、内错角、同旁内角,三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.【举一反三】【变式1】(2023下·上海奉贤·七年级校考期中)如图,下列说法正确的是(
)
A.与是同位角 B.与是内错角C.与是同位角 D.与是同旁内角【答案】D【分析】根据同位角,内错角,同旁内角的定义逐个判断即可.解:、和不是同位角,故本选项不符合题意;B、和不是内错角,故本选项不符合题意;C、和是内错角,不是同位角,故本选项不符合题意;D、和是同旁内角,故本选项符合题意;故选:D.【点拨】本题考查了同位角,内错角,同旁内角的定义等知识点,能正确找出同位角、内错角、同旁内角是解此题的关键.【变式2】(2023下·全国·七年级专题练习)(1)如图,直线,被所截,则和是同位角,和是内错角,和是同旁内角;(2)在(1)中,如果,那么的推理过程如下,请在括号内注明理由:因为(),(),所以()
【答案】已知对顶角相等等量代换【分析】根据对顶角、同位角、内错角及同旁内角的定义,解答即可.解:如图,直线,被所截,则和是同位角,和是内错角,和是同旁内角;(2)在(1)中,如果,那么的推理过程如下,请在括号内注明理由:因为(已知),(对顶角相等),所以(等量代换)故答案为:,,,已知,对顶角相等,等量代换.【点拨】本题考查了对顶角、同位角、内错角及共旁内角的定义,熟记这些概念,并能熟练应用,是解答这类题目的关键,同时还考查了对顶角相等、等量代换等知识.【考点三】平行线公理的理解与认识【例3】(2023下·河北邯郸·七年级统考期末)如图,点P、Q分别是的边、上的点.
(1)过点P、Q分别画、的平行线,两直线相交于点M;(2)过点P、画的垂线,垂足为H,过点P画的垂线交于点G;(3)线段与的大小关系是什么?【答案】(1)见分析;(2)见分析;(3)【分析】(1)利用三角板和直尺按要求作图;(2)利用三角板和直尺按要求作图;(3)根据“垂线段最短”进行判断即可.解:(1)所求图形,如图所示
(2)所求图形,如图所示
(3)根据“垂线段最短”,可得【点拨】本题考查作平行线,作垂线,垂线段最短,掌握作平行线,作垂线是解题的关键.【举一反三】【变式1】(2022下·广东深圳·七年级统考期中)下列说法正确的个数是(
)①经过一点有且只有一条直线与已知直线平行;②一个角的补角一定大于这个角;③直线外一点到这条直线的垂线段,叫做这个点到直线的距离;④同一平面内不相交的两条直线叫做平行线;⑤平面内,过一点有且只有一条直线与已知直线垂直.A.1个 B.2个 C.3个 D.4【答案】B【分析】根据平行公理,补角的定义,点到直线的距离,两直线的位置关系,垂线的性质,逐项分析判断即可求解.解:①经过直线外的一点有且只有一条直线与已知直线平行,故①错误;②一个角的补角不一定大于这个角,故②错误③直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离,故③错误④同一平面内不相交的两条直线叫做平行线,故④正确⑤平面内,过一点有且只有一条直线与已知直线垂直,故⑤正确,故选:B.【点拨】本题考查了平行公理,补角的定义,点到直线的距离,两直线的位置关系,垂线的性质,熟练掌握以上性质定理是解题的关键.【变式2】(2022上·上海·九年级开学考试)如图,点E、F分别是梯形两腰的中点,联结、,如果图中的面积为1.5,那么梯形的面积等于.【答案】6【分析】过点A作于H,交于G,根据梯形中位线定理得到,根据三角形的面积公式、梯形的面积公式计算,得到答案.解:过点A作于H,交于G,如图,∵点E、F分别是梯形两腰的中点,∴是梯形的中位线,∴,∴,,∵,∴,∴,∴,故答案为:6.【点拨】本题考查的是梯形的中位线、三角形的面积计算,掌握梯形中位线定理是解题的关键.【考点四】利用平行线判定求值与证明【例4】(2023·山西忻州·统考模拟预测)小明想知道作业纸上两条相交直线,所夹锐角的大小(如图1).但发现其交点不在作业纸内,无法直接测量.小明设计了如下方案(如图2):
①作直线分别交,于点,,以点为顶点,为一边,在直线的右侧作;②测量的度数即可得到直线,所夹锐角的大小.问题1:你认为小明的方案可行吗?并说明理由.问题2:你还有其他方法吗?请在图1中画图说明.(测量工具:直尺、量角器)【答案】问题1:小明的方案可行.理由见分析;问题2:见分析【分析】问题1:根据同位角相等,两直线平行进行判断;问题2:在上取点,在上取点,作直线,量出一组同旁内角,根据同旁内角互补两直线平行进行判断.解:问题1:小明的方案可行.理由:如图,设直线,相交于点.
,,.问题2:如图,在上取点,在上取点,作直线,量出和的大小,利用三角形内角和即可求出直线,所夹锐角的大小.
若和的和是,则说明两直线平行.【点拨】本题考查了平行线的判定,判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.【举一反三】【变式1】(2023·山西晋中·校联考模拟预测)如图,将一副三角尺如图放置,、交于点,(,)则下列结论不正确的是(
)
A. B.C.若,则 D.若,则【答案】C【分析】由余角的性质,得到,由,得到,因为,故和不平行,由,得到.解:++,,故A正确;,,故B正确;,,,,和不平行,故C错误;,,,,,故D正确.故选:C.【点拨】本题考查平行线的判定,关键是掌握平行线的判定方法.【变式2】(2023下·山东滨州·七年级校考阶段练习)如图,对于下列给出的四个条件:①;②;③;④中,能判定的有.(填写正确条件的序号)
【答案】①③④【分析】根据平行线的判定逐个判断即可得.解:①能判定(内错角相等,两直线平行);②不能判定;③能判定(同位角相等,两直线平行);④能判定(同旁内角互补,两直线平行);故答案为:①③④.【点拨】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题关键.【考点五】利用平行线性质求值与证明【例5】(2024下·江西九江·八年级校考期末)如图1,直线,将一把直角三角尺的直角顶点P放在两平行线之间,两直角边分别交于点E,F.(1)请你判断与之间的数量关系,并说明理由;(2)如图2,若和的平分线相交于点G,求的度数;(3)如图2,若,请用含n的式子表示∠G.【答案】(1),理由见详解;(2);(3)【分析】(1)过P点作,利用平行线的性质定理可得结论;(2)由(1)的计算可得出(2)的结论;(3)探究规律,利用规律解决问题即可.(1)解:,理由:过点P作,如图所示:,,,,,,故答案为:;(2)解:如下图中,和的平分线相交于点G,,,∴同理可得.(3)解:,,由(2)可知,【点拨】本题考查平行线的性质,角平分线的定义,规律型问题等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【举一反三】【变式1】(2023上·黑龙江哈尔滨·七年级哈尔滨市第一一三中学校校考阶段练习)如图,,平分,则等于(
)A. B. C. D.【答案】A【分析】本题考查平行线的性质,根据平行线的性质得到,求出,再利用角平分线计算即可.解:∵,∴,∴,∴,∵平分,∴,∴,故选:A.【变式2】(2024上·重庆·七年级重庆八中校考期末)如图,直线,点E,F分别在直线和直线上,点P在两条平行线之间,和的角平分线交于点H,已知,则的度数为.【答案】/度【分析】本题主要考查了平行线的性质与判定,过点作,过点作.根据平行线的性质得到,结合角平分线的定义得到,同理可得.解:如图所示,过点作,过点作,
∵,∴,,∴,∵,∴,∵,∴,∵平分,平分,∴.∵,∴,∴故答案为:.【考点六】作图【垂线】【例6】(2023下·河北沧州·七年级校考阶段练习)如图是一条河是河边外一点,是河边上一码头.
(1)若要从走到码头,请在图1中作出最短路线示意图.(2)现欲用水管从河边将水引到处,请在图2上作出所需水管最短的铺设方案.【答案】(1)见分析;(2)见分析【分析】(1)根据两点之间线段最短,连接即可得到答案;(2)根据垂线段最短,作即可得到答案.(1)解:根据题意画出图,如图所示:
;(2)解:根据题意画出图如图所示:
.【点拨】本题考查了两点之间线段最短以及垂线段最短,熟练掌握两点之间线段最短以及垂线段最短是解题的关键.【举一反三】【变式1】(2019·浙江金华·校联考二模)甲,乙两位同学用尺规作“过直线l外一点C作直线l的垂线”时,第一步两位同学都以C为圆心,适当长度为半径画弧,交直线l于D,E两点(如图);第二步甲同学作∠DCE的平分线所在的直线,乙同学作DE的中垂线.则下列说法正确的是()A.只有甲的画法正确 B.只有乙的画法正确C.甲,乙的画法都正确 D.甲,乙的画法都不正确【答案】C【分析】利用等腰三角形的三线合一可判断甲乙的画法都正确.解:∵CD=CE,∴∠DCE的平分线垂直DE,DE的垂直平分线过点C,∴甲,乙的画法都正确.故选C.【点拨】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.【变式2】(2023下·天津南开·七年级统考期末)如图,在每个小正方形的边长为1的网格中,每个小正方形的顶点移为格点,线段和的端点A,B,C均在幕点上,请按要求用无刻度的直尺在如图所示的网格中画图.
(1)过点A画线段的垂线,垂足为点D;(2)作经段,;(3)在线段上确定点F,使得最小,在图中画出点F(保留作图痕迹).【答案】(1)见分析;(2)见分析;(3)见分析.【分析】(1)根据网格线的特征画图;(2)根据网格线的特征画图;(3)根据两点之间线段最短求解.(1)解:如图,即为所求;(2)如图,线段即为所求;(3)∵两点之间线段最短,∴直接连接即可,如图,点即为所求.【点拨】本题考查了作图,熟悉网格线的特征是解题的关键.【平移】【例7】(2024上·江苏泰州·八年级统考期中)(1)如图1,正方形网格图中,每个小正方形的边长都是1,画出将向右平移5个单位后的;再画出关于直线对称的图形;(2)在(1)中,若点为直线上的一点,求的最小值:(3)如图2,中,为上的一点,在上求作一点,使得(保留作图痕迹,不要求写作法).【答案】(1)见分析;(2)5;(3)见分析【分析】对于(1),将三个点向右平移5个单位,再连接可得,然后作三个顶点关于直线l的对称点,依次连接即可;对于(2),根据对称确定点P的位置,再根据勾股定理求出答案;对于(3),先作点C的对称点,连接与的交点即为点Q,根据对称性可知,再根据对顶角相等得,即可得出.解:(1)如图所示.(2)如图所示,∵点和关于直线l对称,∴,∴.根据两点之间线段最短,连接与直线l的交点即为点P.根据勾股定理,得.∴的最小值为5;(3)如图所示,以点C为圆心,以任意长为半径画弧交于点H,G,再分别以点H,G为圆心,以大于为半径画弧,交于点E,作射线,截取,连接交于点Q,则点Q为所求作的点.【点拨】本题主要考查了作平移图形,作轴对称图形,勾股定理,两点之间线段最短求线段和最小,作线段垂直平分线等,掌握尺规作基础图形是解题的关键.【举一反三】【变式1】(2020下·广西百色·七年级统考期末)如图,在方格纸上,向右平移(
)格后得到A. B. C. D.【答案】C【分析】由题意直接根据平移的基本性质可得对应点间线段长度即为平移距离进行分析即可.解:从图中看出,点B1与点B的距离为4格,所以向右平移4格后得到.故选:C.【点拨】本题考查图形平移,注意掌握平移的基本性质即对应点间线段长度即为平移距离.【变式2】(2021下·安徽马鞍山·七年级统考期末)如图,将长为,宽为的长方形先向右平移,再向下平移,得到长方形,则阴影部分的面积为.
【答案】【分析】根据图形移动可求出,的长,根据几何图形面积的计算方法即可求解,本题主要考查图形的平移,掌握图形平移求线段长度的方法是解题的关键.解:由题意可得,阴影部分是矩形,长,宽,∴阴影部分的面积,故答案为:.【考点七】平移的性质【例8】(2023下·全国·八年级假期作业)如图,线段AB,BC被直线AC所截,D是线段AC上的点,过点D作DE∥AB,连接AE,.将线段AE沿着直线AC平移得到线段PQ,连接DQ.(1)求证:;(2)若,,求的度数.【答案】(1)见分析;(2)解:(1)证明:,.,,.(2)如图,过点D作DF∥AE交AB于点F,则.∵,由平移的性质,得,,.,,,,【举一反三】【变式1】(2023下·河北石家庄·七年级校考期中)如图,在三角形中,.将三角形沿所在直线向右平移,所得图形对应为三角形,若要使成立,则平移的距离是(
)
A.6 B.9 C.6或12 D.9或12【答案】C【分析】根据平移的性质可得,则,然后分点E在线段上和点E在线段的延长线两种情况,分别求解即可.解:根据平移的性质可得,∵,∴,又∵,∴当点E在线段上时,,当点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国人民大学《信息管理专业研究方法论与创新教育》2023-2024学年第一学期期末试卷
- 郑州软件职业技术学院《体育产品概论》2023-2024学年第一学期期末试卷
- 小学2024年体育自评结果
- 浙江电力职业技术学院《生产运作实验》2023-2024学年第一学期期末试卷
- 长安大学兴华学院《瑜伽基础》2023-2024学年第一学期期末试卷
- 餐饮文化与创新模板
- 双十一医保新品发布
- 专业基础-房地产经纪人《专业基础》模拟试卷5
- 三年级学习导向模板
- 气候变迁与寒露模板
- 《新生儿预防接种》课件
- 小学五年级上册数学寒假作业每日一练
- DB1303T382-2024 创伤性休克患者护理指南
- 监控工程验收单-范本模板
- 社会学概论课件
- 华为经营管理-华为的研发管理(6版)
- C及C++程序设计课件
- 公路路基路面现场测试随机选点记录
- 维克多高中英语3500词汇
- 国家自然科学基金(NSFC)申请书样本
- 湖南省省级温室气体排放清单土地利用变化和林业部分
评论
0/150
提交评论