山东省济宁市曲阜一中2024届中考数学五模试卷含解析_第1页
山东省济宁市曲阜一中2024届中考数学五模试卷含解析_第2页
山东省济宁市曲阜一中2024届中考数学五模试卷含解析_第3页
山东省济宁市曲阜一中2024届中考数学五模试卷含解析_第4页
山东省济宁市曲阜一中2024届中考数学五模试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省济宁市曲阜一中2024届中考数学五模试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.式子有意义的x的取值范围是()A.且x≠1 B.x≠1 C. D.且x≠12.下列几何体中三视图完全相同的是()A. B. C. D.3.如图,矩形中,,,以为圆心,为半径画弧,交于点,以为圆心,为半径画弧,交于点,则的长为()A.3 B.4 C. D.54.中华人民共和国国家统计局网站公布,2016年国内生产总值约为74300亿元,将74300亿用科学计数法可以表示为()A. B. C. D.5.如图,AB∥CD,AD与BC相交于点O,若∠A=50°10′,∠COD=100°,则∠C等于()A.30°10′ B.29°10′ C.29°50′ D.50°10′6.定义:若点P(a,b)在函数y=1x的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=ax2+bx称为函数y=1x的一个“派生函数”.例如:点(2,12)在函数y=1x的图象上,则函数y=2x2+(1)存在函数y=1x(2)函数y=1xA.命题(1)与命题(2)都是真命题B.命题(1)与命题(2)都是假命题C.命题(1)是假命题,命题(2)是真命题D.命题(1)是真命题,命题(2)是假命题7.如图,AB是的直径,点C,D在上,若,则的度数为A. B. C. D.8.弘扬社会主义核心价值观,推动文明城市建设.根据“文明创建工作评分细则”,l0名评审团成员对我市2016年度文明刨建工作进行认真评分,结果如下表:人数2341分数80859095则得分的众数和中位数分别是()A.90和87.5 B.95和85 C.90和85 D.85和87.59.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是()A.主视图 B.俯视图 C.左视图 D.一样大10.今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,1.对于这组数据,下列说法错误的是()A.平均数是15 B.众数是10 C.中位数是17 D.方差是二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,某景区的两个景点A、B处于同一水平地面上、一架无人机在空中沿MN方向水平飞行进行航拍作业,MN与AB在同一铅直平面内,当无人机飞行至C处时、测得景点A的俯角为45°,景点B的俯角为30°,此时C到地面的距离CD为100米,则两景点A、B间的距离为__米(结果保留根号).12.若一个三角形两边的垂直平分线的交点在第三边上,则这个三角形是_____三角形.13.若关于x的不等式组恰有3个整数解,则字母a的取值范围是_____.14.今年“五一”节日期间,我市四个旅游景区共接待游客约303000多人次,这个数据用科学记数法可记为_____.15.反比例函数的图象经过点和,则______.16.如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为.三、解答题(共8题,共72分)17.(8分)如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B(﹣4,n)两点.分别求出一次函数与反比例函数的表达式;过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.18.(8分)如图,AB为⊙O的直径,D为⊙O上一点,以AD为斜边作△ADC,使∠C=90°,∠CAD=∠DAB求证:DC是⊙O的切线;若AB=9,AD=6,求DC的长.19.(8分)如图1,在菱形ABCD中,AB=,tan∠ABC=2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.(1)求证:BE=DF;(2)当t=秒时,DF的长度有最小值,最小值等于;(3)如图2,连接BD、EF、BD交EC、EF于点P、Q,当t为何值时,△EPQ是直角三角形?20.(8分)某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克.经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,才能使生产这批产品的成本最低?请直接写出方案.21.(8分)如图,已知二次函数的图象经过,两点.求这个二次函数的解析式;设该二次函数的对称轴与轴交于点,连接,,求的面积.22.(10分)在眉山市樱花节期间,岷江二桥一端的空地上有一块矩形的标语牌ABCD(如图).已知标语牌的高AB=5m,在地面的点E处,测得标语牌点A的仰角为30°,在地面的点F处,测得标语牌点A的仰角为75°,且点E,F,B,C在同一直线上,求点E与点F之间的距离.(计算结果精确到0.1m,参考数据:≈1.41,≈1.73)23.(12分)某校初三进行了第三次模拟考试,该校领导为了了解学生的数学考试情况,抽样调查了部分学生的数学成绩,并将抽样的数据进行了如下整理.(1)填空_______,_______,数学成绩的中位数所在的等级_________.(2)如果该校有1200名学生参加了本次模拟测,估计等级的人数;(3)已知抽样调查学生的数学成绩平均分为102分,求A级学生的数学成绩的平均分数.①如下分数段整理样本等级等级分数段各组总分人数48435741712②根据上表绘制扇形统计图24.已知边长为2a的正方形ABCD,对角线AC、BD交于点Q,对于平面内的点P与正方形ABCD,给出如下定义:如果,则称点P为正方形ABCD的“关联点”.在平面直角坐标系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).(1)在,,中,正方形ABCD的“关联点”有_____;(2)已知点E的横坐标是m,若点E在直线上,并且E是正方形ABCD的“关联点”,求m的取值范围;(3)若将正方形ABCD沿x轴平移,设该正方形对角线交点Q的横坐标是n,直线与x轴、y轴分别相交于M、N两点.如果线段MN上的每一个点都是正方形ABCD的“关联点”,求n的取值范围.

参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须且.故选A.2、A【解析】

找到从物体正面、左面和上面看得到的图形全等的几何体即可.【详解】解:A、球的三视图完全相同,都是圆,正确;B、圆柱的俯视图与主视图和左视图不同,错误;C、圆锥的俯视图与主视图和左视图不同,错误;D、四棱锥的俯视图与主视图和左视图不同,错误;故选A.【点睛】考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.3、B【解析】

连接DF,在中,利用勾股定理求出CF的长度,则EF的长度可求.【详解】连接DF,∵四边形ABCD是矩形∴在中,故选:B.【点睛】本题主要考查勾股定理,掌握勾股定理的内容是解题的关键.4、D【解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:74300亿=7.43×1012,

故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5、C【解析】

根据平行线性质求出∠D,根据三角形的内角和定理得出∠C=180°-∠D-∠COD,代入求出即可.【详解】∵AB∥CD,∴∠D=∠A=50°10′,∵∠COD=100°,∴∠C=180°-∠D-∠COD=29°50′.故选C.【点睛】本题考查了三角形的内角和定理和平行线的性质的应用,关键是求出∠D的度数和得出∠C=180°-∠D-∠COD.应该掌握的是三角形的内角和为180°.6、C【解析】试题分析:(1)根据二次函数y=ax2+bx的性质a、b同号对称轴在y轴左侧,a、b异号对称轴在y轴右侧即可判断.(2)根据“派生函数”y=ax2+bx,x=0时,y=0,经过原点,不能得出结论.(1)∵P(a,b)在y=上,∴a和b同号,所以对称轴在y轴左侧,∴存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧是假命题.(2)∵函数y=的所有“派生函数”为y=ax2+bx,∴x=0时,y=0,∴所有“派生函数”为y=ax2+bx经过原点,∴函数y=的所有“派生函数”,的图象都进过同一点,是真命题.考点:(1)命题与定理;(2)新定义型7、B【解析】试题解析:连接AC,如图,∵AB为直径,∴∠ACB=90°,∴∴故选B.点睛:在同圆或等圆中,同弧或等弧所对的圆周角相等.8、A【解析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.解:在这一组数据中90是出现次数最多的,故众数是90;排序后处于中间位置的那个数,那么由中位数的定义可知,这组数据的中位数是87.5;故选:A.“点睛”本题考查了众数、中位数的知识,掌握各知识点的概念是解答本题的关键.注意中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9、C【解析】如图,该几何体主视图是由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,故三种视图面积最小的是左视图,故选C.10、C【解析】

解:中位数应该是15和17的平均数16,故C选项错误,其他选择正确.故选C.【点睛】本题考查求中位数,众数,方差,理解相关概念是本题的解题关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、100+100【解析】【分析】由已知可得∠ACD=∠MCA=45°,∠B=∠NCB=30°,继而可得∠DCB=60°,从而可得AD=CD=100米,DB=100米,再根据AB=AD+DB计算即可得.【详解】∵MN//AB,∠MCA=45°,∠NCB=30°,∴∠ACD=∠MCA=45°,∠B=∠NCB=30°,∵CD⊥AB,∴∠CDA=∠CDB=90°,∠DCB=60°,∵CD=100米,∴AD=CD=100米,DB=CD•tan60°=CD=100米,∴AB=AD+DB=100+100(米),故答案为:100+100.【点睛】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,解题的关键是借助俯角构造直角三角形并解直角三角形.注意方程思想与数形结合思想的应用.12、直角三角形.【解析】

根据题意,画出图形,用垂直平分线的性质解答.【详解】点O落在AB边上,连接CO,∵OD是AC的垂直平分线,∴OC=OA,同理OC=OB,∴OA=OB=OC,∴A、B、C都落在以O为圆心,以AB为直径的圆周上,∴∠C是直角.∴这个三角形是直角三角形.【点睛】本题考查线段垂直平分线的性质,解题关键是准确画出图形,进行推理证明.13、﹣2≤a<﹣1.【解析】

先确定不等式组的整数解,再求出a的范围即可.【详解】∵关于x的不等式组恰有3个整数解,∴整数解为1,0,﹣1,∴﹣2≤a<﹣1,故答案为:﹣2≤a<﹣1.【点睛】本题考查了一元一次不等式组的整数解的应用,能根据已知不等式组的解集和整数解确定a的取值范围是解此题的关键.14、3.03×101【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于303000有6位整数,所以可以确定n=6-1=1.详解:303000=3.03×101,故答案为:3.03×101.点睛:此题考查科学记数法表示较大的数的方法,准确确定a与n的值是解题的关键.15、-1【解析】

先把点(1,6)代入反比例函数y=,求出k的值,进而可得出反比例函数的解析式,再把点(m,-3)代入即可得出m的值.【详解】解:∵反比例函数y=的图象经过点(1,6),∴6=,解得k=6,∴反比例函数的解析式为y=.∵点(m,-3)在此函数图象上上,∴-3=,解得m=-1.故答案为-1.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.16、7【解析】试题分析:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC.∴CD=BC-BD=9-3=6,;∠BAD+∠ADB=120°.∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC.又∵∠B=∠C=60°,∴△ABD∽△DCE.∴,即.∴.三、解答题(共8题,共72分)17、(1)反比例函数解析式为y=,一次函数解析式为y=x+2;(2)△ACB的面积为1.【解析】

(1)将点A坐标代入y=可得反比例函数解析式,据此求得点B坐标,根据A、B两点坐标可得直线解析式;(2)根据点B坐标可得底边BC=2,由A、B两点的横坐标可得BC边上的高,据此可得.【详解】解:(1)将点A(2,4)代入y=,得:m=8,则反比例函数解析式为y=,当x=﹣4时,y=﹣2,则点B(﹣4,﹣2),将点A(2,4)、B(﹣4,﹣2)代入y=kx+b,得:,解得:,则一次函数解析式为y=x+2;(2)由题意知BC=2,则△ACB的面积=×2×1=1.【点睛】本题主要考查一次函数与反比例函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积求法是解题的关键.18、(1)见解析;(2)【解析】分析:(1)如下图,连接OD,由OA=OD可得∠DAO=∠ADO,结合∠CAD=∠DAB,可得∠CAD=∠ADO,从而可得OD∥AC,由此可得∠C+∠CDO=180°,结合∠C=90°可得∠CDO=90°即可证得CD是⊙O的切线;(2)如下图,连接BD,由AB是⊙O的直径可得∠ADB=90°=∠C,结合∠CAD=∠DAB可得△ACD∽△ADB,由此可得,在Rt△ABD中由AD=6,AB=9易得BD=,由此即可解得CD的长了.详解:(1)如下图,连接OD.∵OA=OD,∴∠DAB=∠ODA,∵∠CAD=∠DAB,∴∠ODA=∠CAD∴AC∥OD∴∠C+∠ODC=180°∵∠C=90°∴∠ODC=90°∴OD⊥CD,∴CD是⊙O的切线.(2)如下图,连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∵AB=9,AD=6,∴BD===3,∵∠CAD=∠BAD,∠C=∠ADB=90°,∴△ACD∽△ADB,∴,∴,∴CD=.点睛:这是一道考查“圆和直线的位置关系与相似三角形的判定和性质”的几何综合题,作出如图所示的辅助线,熟悉“圆的切线的判定方法”和“相似三角形的判定和性质”是正确解答本题的关键.19、(1)见解析;(2)t=(6+6),最小值等于12;(3)t=6秒或6秒时,△EPQ是直角三角形【解析】

(1)由∠ECF=∠BCD得∠DCF=∠BCE,结合DC=BC、CE=CF证△DCF≌△BCE即可得;(2)作BE′⊥DA交DA的延长线于E′.当点E运动至点E′时,由DF=BE′知此时DF最小,求得BE′、AE′即可得答案;(3)①∠EQP=90°时,由∠ECF=∠BCD、BC=DC、EC=FC得∠BCP=∠EQP=90°,根据AB=CD=6,tan∠ABC=tan∠ADC=2即可求得DE;②∠EPQ=90°时,由菱形ABCD的对角线AC⊥BD知EC与AC重合,可得DE=6.【详解】(1)∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,∴∠DCF=∠BCE,∵四边形ABCD是菱形,∴DC=BC,在△DCF和△BCE中,,∴△DCF≌△BCE(SAS),∴DF=BE;(2)如图1,作BE′⊥DA交DA的延长线于E′.当点E运动至点E′时,DF=BE′,此时DF最小,在Rt△ABE′中,AB=6,tan∠ABC=tan∠BAE′=2,∴设AE′=x,则BE′=2x,∴AB=x=6,x=6,则AE′=6∴DE′=6+6,DF=BE′=12,时间t=6+6,故答案为:6+6,12;(3)∵CE=CF,∴∠CEQ<90°,①当∠EQP=90°时,如图2①,∵∠ECF=∠BCD,BC=DC,EC=FC,∴∠CBD=∠CEF,∵∠BPC=∠EPQ,∴∠BCP=∠EQP=90°,∵AB=CD=6,tan∠ABC=tan∠ADC=2,∴DE=6,∴t=6秒;②当∠EPQ=90°时,如图2②,∵菱形ABCD的对角线AC⊥BD,∴EC与AC重合,∴DE=6,∴t=6秒,综上所述,t=6秒或6秒时,△EPQ是直角三角形.【点睛】此题是菱形与动点问题,考查菱形的性质,三角形全等的判定定理,等腰三角形的性质,最短路径问题,注意(3)中的直角没有明确时应分情况讨论解答.20、(1)甲种材料每千克25元,乙种材料每千克35元.(2)共有四种方案;(3)生产A产品21件,B产品39件成本最低.【解析】试题分析:(1)、首先设甲种材料每千克x元,乙种材料每千克y元,根据题意列出二元一次方程组得出答案;(2)、设生产B产品a件,则A产品(60-a)件,根据题意列出不等式组,然后求出a的取值范围,得出方案;得出生产成本w与a的函数关系式,根据函数的增减性得出答案.试题解析:(1)设甲种材料每千克x元,乙种材料每千克y元,依题意得:x+y=602y+3y=155解得:答:甲种材料每千克25元,乙种材料每千克35元.(2)生产B产品a件,生产A产品(60-a)件.依题意得:(25×4+35×1)(60-a)+(35×3+25×3)a≤10000a>38解得:∵a的值为非负整数∴a=39、40、41、42∴共有如下四种方案:A种21件,B种39件;A种20件,B种40件;A种19件,B种41件;A种18件,B种42件(3)、答:生产A产品21件,B产品39件成本最低.设生产成本为W元,则W与a的关系式为:w=(25×4+35×1+40)(60-a)+(35×+25×3+50)a=55a+10500∵k=55>0∴W随a增大而增大∴当a=39时,总成本最低.考点:二元一次方程组的应用、不等式组的应用、一次函数的应用.21、见解析【解析】

(1)二次函数图象经过A(2,0)、B(0,-6)两点,两点代入y=-x2+bx+c,算出b和c,即可得解析式;(2)先求出对称轴方程,写出C点的坐标,计算出AC,然后由面积公式计算值.【详解】(1)把,代入得,解得.∴这个二次函数解析式为.(2)∵抛物线对称轴为直线,∴的坐标为,∴,∴.【点睛】本题是二次函数的综合题,要会求二次函数的对称轴,会运用面积公式.22、7.3米【解析】

:如图作FH⊥AE于H.由题意可知∠HAF=∠HFA=45°,推出AH=HF,设AH=HF=x,则EF=2x,EH=x,在Rt△AEB中,由∠E=30°,AB=5米,推出AE=2AB=10米,可得x+x=10,解方程即可.【详解】解:如图作FH⊥AE于H.由题意可知∠HAF=∠HFA=45°,∴AH=HF,设AH=HF=x,则EF=2x,EH=x,在Rt△AEB中,∵∠E=30°,AB=5米,∴AE=2AB=10米,∴x+x=10,∴x=5﹣5,∴EF=2x=10﹣10≈7.3米,答:E与点F之间的距离为7.3米【点睛】本题考查的知识点是解直角三角形的应用-仰角俯角问题,解题的关键是熟练的掌握解直角三角形的应用-仰角俯角问题.23、(1)6;8;B;(2)120人;(3)113分.【解析】

(1)根据表格中的数据和扇形统计图中的数据可以求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论