吉林省德惠市第二十九中学2024-2025学年数学九年级第一学期开学经典试题【含答案】_第1页
吉林省德惠市第二十九中学2024-2025学年数学九年级第一学期开学经典试题【含答案】_第2页
吉林省德惠市第二十九中学2024-2025学年数学九年级第一学期开学经典试题【含答案】_第3页
吉林省德惠市第二十九中学2024-2025学年数学九年级第一学期开学经典试题【含答案】_第4页
吉林省德惠市第二十九中学2024-2025学年数学九年级第一学期开学经典试题【含答案】_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页吉林省德惠市第二十九中学2024-2025学年数学九年级第一学期开学经典试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)八边形的内角和、外角和共多少度()A. B. C. D.2、(4分)为了了解某市参加中考的25000名学生的视力情况,抽查了2000名学生的视力进行统计分析,下面四个判断正确的是()A.2000名学生的视力是总体的一个样本 B.25000名学生是总体C.每名学生是总体的一个个体 D.样本容量是2000名3、(4分)下列命题中,正确的是()A.矩形的邻边不能相等 B.菱形的对角线不能相等C.矩形的对角线不能相互垂直 D.平行四边形的对角线可以互相垂直4、(4分)如图,长宽高分别为3,2,1的长方体木块上有一只小虫从顶点A出发沿着长方体的外表面亮到现点B,则它爬行的最短路程是()A. B.2 C.3 D.55、(4分)下列图形是中心对称图形的是()A. B. C. D.6、(4分)已知:如图,是正方形内的一点,且,则的度数为()A. B. C. D.7、(4分)某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(度)电费价格(元/度)0.480.530.78七月份是用电高峰期,李叔计划七月份电费支出不超过200元,则李叔家七月份最多可用电的度数是().A.100 B.400 C.396 D.3978、(4分)下列函数①y=5x;②y=﹣2x﹣1;③y=;④y=x﹣6;⑤y=x2﹣1其中,是一次函数的有()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)将一元二次方程化成一般式后,其一次项系数是______.10、(4分)以1,1,为边长的三角形是___________三角形.11、(4分)如图,A、B两点分别位于一个池塘的两端,小聪想用绳子测量A、B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A、B的点C,找到AC、BC的中点D、E,并且测出DE的长为13m,则A、B间的距离为______m.12、(4分)正方形A1B1C1O、A2B2C2C1、A3B3C3C2…按如图的方式放置,A1、A2、A3…和点C1、C2、C3…分别在直线y=x+2和x轴上,则点∁n的横坐标是_____.(用含n的代数式表示)13、(4分)若,则m-n的值为_____.三、解答题(本大题共5个小题,共48分)14、(12分)某校招聘一名数学老师,对应聘者分别进行了教学能力、科研能力和组织能力三项测试,其中甲、乙两名应聘者的成绩如右表:(单位:分)教学能力科研能力组织能力甲818586乙928074(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用?(2)根据实际需要,学校将教学、科研和组织能力三项测试得分按5:3:2的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?15、(8分)解方程.16、(8分)如图,已知点A、C在双曲线上,点B、D在双曲线上,AD//BC//y轴.(I)当m=6,n=-3,AD=3时,求此时点A的坐标;(II)若点A、C关于原点O对称,试判断四边形ABCD的形状,并说明理由;(III)若AD=3,BC=4,梯形ABCD的面积为,求mn的最小值.17、(10分)已知:如图,A,B,C,D在同一直线上,且AB=CD,AE=DF,AE∥DF.求证:四边形EBFC是平行四边形.18、(10分)我市遗爱湖公园内有一块四边形空地,如图所示,景区管理人员想在这块空地上铺满观赏草坪,需要测量其面积.经技术人员测量,∠ABC=90°,AB=20米,BC=15米,CD=7米,AD=24米.(1)请你帮助管理人员计算出这个四边形对角线AC的长度;(2)请用你学过的知识帮助管理员计算出这块空地的面积.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)方程的解是_______.20、(4分)如图,△ABC中,AB=BC=12cm,D、E、F分别是BC、AC、AB边上的中点,则四边形BDEF的周长是__________cm.21、(4分)2018﹣2019赛季中国男子篮球职业联赛(CBA),继续采用双循环制(每两队之间都进行两场比赛),总比赛场数为380场.求有多少支队伍参加比赛?设参赛队伍有x支,则可列方程为_____.22、(4分)2019年6月12日,重庆直达香港高铁的车票正式开售据悉,重庆直达香港的这趟G319/320次高铁预计在7月份开行,全程1342公里只需7个半小时该车次沿途停靠站点包括遵义、贵阳东、桂林西、肇庆东、广州南和深圳北重庆直达香港高铁开通将为重庆旅游业发展增添生机与活力,预计重庆旅游经济将创新高在此之前技术部门做了大量测试,在一次测试中一高铁列车从地出发匀速驶向地,到达地停止;同时一普快列车从地出发,匀速驶向地,到达地停止且,两地之间有一地,其中,如图①两列车与地的距离之和(千米)与普快列车行驶时间(小时)之间的关系如图②所示则高铁列车到达地时,普快列车离地的距离为__________千米.23、(4分)如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是_____.二、解答题(本大题共3个小题,共30分)24、(8分)已知如图,在正方形中,为的中点,,平分并交于.求证:25、(10分)如图,已知直线y1经过点A(-1,0)与点B(2.3),另一条直线y2经过点B,且与x轴交于点P(m.0).(1)求直线y1的解析式;(2)若三角形ABP的面积为,求m的值.26、(12分)已知:如图,点B,C,D在同一直线上,△ABC和△CDE都是等边三角形,BE交AC于点F,AD交CE于点H,(1)求证:△BCE≌△ACD;(2)求证:CF=CH;(3)判断△CFH的形状并说明理由.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】

n边形的内角和是(n−2)•180°,已知多边形的边数,代入多边形的内角和公式就可以求出内角和;任何多边形的外角和是360度,与多边形的边数无关;再把它们相加即可求解.【详解】解:八边形的内角和为(8−2)•180°=1080°;外角和为360°,1080°+360°=1440°.故选:B.本题考查了多边形内角与外角,正确记忆理解多边形的内角和定理,以及外角和定理是解决本题的关键.2、A【解析】

根据相关概念(总体:所要考察对象的全体;个体:总体的每一个考察对象叫个体;样本:抽取的部分个体叫做一个样本;样本容量:样本中个体的数目)进行分析.【详解】根据题意可得:2000名学生的视力情况是总体,

2000名学生的视力是样本,

2000是样本容量,

每个学生的视力是总体的一个个体.

故选A.考查了总体、个体、样本、样本容量.解题关键是理解相差概念(总体:所要考察对象的全体;个体:总体的每一个考察对象叫个体;样本:抽取的部分个体叫做一个样本;样本容量:样本中个体的数目).3、D【解析】

根据矩形的性质对A进行判断;根据菱形的性质对B进行判断;根据矩形的性质对C进行判断;根据平行四边形的性质对D进行判断.【详解】A、矩形的邻边能相等,若相等,则矩形变为正方形,故A错误;B、菱形的对角线不一定相等,若相等,则菱形变为正方形,故B错误;C、矩形的对角线不一定相互垂直,若互相垂直,则矩形变为正方形,故C错误;D、平行四边形的对角线可以互相垂直,此时平行四边形变为菱形,故D正确.故选D.本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.4、C【解析】

将长方形的盒子按不同方式展开,得到不同的矩形,求出不同矩形的对角线,最短者即为正确答案.【详解】解:将长方形的盒子按不同方式展开,得到不同的矩形,对角线长分别为:∴从点A出发沿着长方体的表面爬行到达点B的最短路程是3.故选C.本题主要考查了两点之间线段最短,解答时根据实际情况进行分类讨论,灵活运用勾股定理是解题的关键.5、B【解析】

根据中心对称图形的概念,轴对称图形与中心对称图形是图形沿对称中心旋转180度后与原图重合,即可解题.A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选B.考点:中心对称图形.【详解】请在此输入详解!6、D【解析】

利用等边三角形和正方形的性质求得,然后利用等腰三角形的性质求得的度数,从而求得的度数,利用三角形的内角和求得的度数.【详解】解:,是等边三角形,,,,,,同理可得,,故选:.本题考查了正方形的性质及等边三角形的性质,解题的关键是根据等腰三角形的性质求得有关角的度数,难度不大.7、C【解析】

先判断出电费是否超过400度,然后根据不等关系:七月份电费支出不超过200元,列不等式计算即可.【详解】解:0.48×200+0.53×200

=96+106

=202(元),

故七月份电费支出不超过200元时电费不超过400度,

依题意有0.48×200+0.53(x-200)≤200,

解得x≤1.

答:李叔家七月份最多可用电的度数是1.

故选:C.本题考查了列一元一次不等式解实际问题的运用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的不等关系.8、C【解析】

直接利用一次函数的定义:一般地:形如(,、是常数)的函数,进而判断得出答案.【详解】①;②;③;④;⑤其中,是一次函数的有:①;②;④共3个.故选:.此题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、-7【解析】

根据完全平方公式进行化简即可求解.【详解】由得x2-7x-3=0∴其一次项系数是-7.此题主要考查一元二次方程的一般式,解题的关键是熟知完全平方公式.10、等腰直角【解析】

根据等腰三角形和直角三角形的性质以及判定定理进行判断即可.【详解】∵∴是等腰三角形∵∴是直角三角形∴该三角形是等腰直角三角形故答案为:等腰直角.本题考查了等腰三角形和直角三角形的证明问题,掌握等腰三角形和直角三角形的性质以及判定定理是解题的关键.11、1【解析】

D、E是AC和BC的中点,则DE是△ABC的中位线,则依据三角形的中位线定理即可求解.【详解】解:∵D,E分别是AC,BC的中点,∴AB=2DE=1m.故答案为:1.本题考查了三角形的中位线定理,正确理解定理是解题的关键.12、【解析】

观察图像,由直线y=x+2和正方形的关系,即可得出规律,推导出Cn的横坐标.【详解】解:根据题意,由图像可知,,正方形A1B1C1O、A2B2C2C1,直线y=x+2的斜率为1,则以此类推,,此题主要考查一次函数图像的性质和正方形的关系,推导得出关系式.13、4【解析】

根据二次根式与平方的非负性即可求解.【详解】依题意得m-3=0,n+1=0,解得m=3,n=-1,∴m-n=4此题主要考查二次根式与平方的非负性,解题的关键是熟知二次根式与平方的非负性.三、解答题(本大题共5个小题,共48分)14、(1)甲被录用;(2)乙被录用.【解析】分析:(1)根据平均数的计算公式分别进行计算,平均数大的将被录用;(2)根据加权平均数的计算公式分别进行解答,加权平均数大的将被录用;详解:(1)甲的平均成绩为=84(分);乙的平均成绩为=82(分),因为甲的平均成绩高于乙的平均成绩,所以甲被录用;(2)根据题意,甲的平均成绩为=83.2(分),乙的平均成绩为=84.8(分),因为甲的平均成绩低于乙的平均成绩,所以乙被录用.点睛:本题重点考查了算术平均数和加权平均数的计算公式,希望同学们要牢记这些公式,并能够灵活运用.数据x1、x2、……、xn的算术平均数:=(x1+x2+……+xn),加权平均数:(其中w1、w2、……wn为权数).算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数.15、原分式方程无解.【解析】

根据解分式方程的方法可以解答本方程,去分母将分式方程化为整式方程,解整式方程,验证.【详解】方程两边乘(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3即:x2+2x﹣x2﹣x+2=3整理,得x=1检验:当x=1时,(x﹣1)(x+2)=0,∴原方程无解.本题考查解分式方程,解题的关键是明确解放式方程的计算方法.16、(I)点的坐标为;(II)四边形是平行四边形,理由见解析;(III)的最小值是.【解析】

(I)由,,可得,.分别表示出点A、D的坐标,根据,即可求出点A的坐标.(II)根据点A、C关于原点O对称,设点A的坐标为:,即可分别表示出B、C、D的坐标,然后可得出与互相平分可证明出四边形是平行四边形.(III)设与的距离为,由,,梯形的面积为,可求出h=7,根据,,可得,进而得出答案.【详解】(I)∵,,∴,,设点的坐标为,则点的坐标为,由得:,解得:,∴此时点的坐标为.(II)四边形是平行四边形,理由如下:设点的坐标为,∵点、关于原点对称,∴点的坐标为,∵∥∥轴,且点、在双曲线上,,∴点,点,∴点B与点D关于原点O对称,即,且、、三点共线.又点、C关于原点O对称,即,且、、三点共线.∴与互相平分.∴四边形是平行四边形.(III)设与的距离为,,,梯形的面积为,∴,即,解得:,设点的坐标为,则点,,,由,,可得:,则,,∴,解得:,∴,∵.∴.∴,即.又,,∴当取到等号.即,时,的最小值是.本题主要考查了反比例函数的性质和图像,本题涉及知识点比较多,打好基础是解决本题的关键.17、证明过程见详解.【解析】

连接AF,ED,EF,EF交AD于O,证明四边形AEDF为平行四边形,利用平行四边形的性质可得答案.【详解】证明:连接AF,ED,EF,EF交AD于O,∵AE=DF,AE∥DF,∴四边形AEDF为平行四边形;∴EO=FO,AO=DO;又∵AB=CD,∴AO﹣AB=DO﹣CD;∴BO=CO;又∵EO=FO,∴四边形EBFC是平行四边形.本题考查的是平行四边形的判定与性质,掌握平行四边形的判定与性质是解题的关键.18、(1)25米;(2)234米2【解析】

(1)连接AC,利用勾股定理求出AC即可;(2)利用勾股定理的逆定理证明∠ADC=90°,计算两个直角三角形面积即可解决问题【详解】(1)连接AC.在RtΔABC中,由勾股定理得:AC=AB2(2)在ΔADC中,∵AD∴∠ADC=90°.∴S四边形ABCD=本题考查勾股定理及其逆定理的应用,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】

观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】解:两边同时乘以得,,解得,,检验:当时,,不是原分式方程的解;当时,,是原分式方程的解.故答案为:.本题考查了解分式方程:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.20、24【解析】

根据中点的性质求出BF、BD,根据中位线的性质求出DE、FE,从而求出四边形BDEF的周长.【详解】∵D、E、F分别是BC、AC、AB边上的中点,∴,,,∵AB=BC=12cm∴BF=DE=BD=BF=6cm∴四边形BDEF的周长为24cm.本题考查线段的中点、三角形中位线定理.解决本题的关键是利用三角形的中位线平行于第三边并且等于第三边的一半求出DE和FE.21、x(x﹣1)=1【解析】

设参赛队伍有x支,根据参加篮球职业联赛的每两队之间都进行两场比赛,共要比赛1场,可列出方程.【详解】设参赛队伍有x支,根据题意得:x(x﹣1)=1故答案为x(x﹣1)=1.本题考查了由实际问题抽象出一元二次方程,关键是根据总比赛场数做为等量关系列方程求解.22、1【解析】

由图象可知4.5小时两列车与C地的距离之和为0,于是高铁列车和普快列车在C站相遇,由于AC=2BC,因此高铁列车的速度是普快列车的2倍,相遇后图象的第一个转折点,说明高铁列车到达B站,此时两车距C站的距离之和为1千米,由于V高铁=2V普快,因此BC距离为1千米的三分之二,即240千米,普快离开C占的距离为1千米的三分之一,即120千米,于是可以得到全程为240+240×2=720千米,当高铁列车到达B站时,普快列车离开B站240+120=1千米,此时距A站的距离为720-1=1千米.【详解】∵图象过(4.5,0)

∴高铁列车和普快列车在C站相遇

∵AC=2BC,

∴V高铁=2V普快,

BC之间的距离为:1×=240千米,全程为AB=240+240×2=720千米,

此时普快离开C站1×=120千米,

当高铁列车到达B站时,普快列车距A站的距离为:720-120-240=1千米,

故答案为:1.此题考查一次函数的应用.解题关键是由函数图象得出相关信息,明确图象中各个点坐标的实际意义.联系行程类应用题的数量关系是解决问题的关键,图象与实际相结合容易探求数量之间的关系,也是解决问题的突破口.23、【解析】

根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度【详解】∵四边形ABCD是菱形,∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,∴BC==5cm,∴S菱形ABCD==×6×8=24cm2,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=cm.故答案为:cm.此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.二、解答题(本大题共3个小题,共30分)24、见解析【解析】

取DA的中点F,连接FM,根据正方形的性质可得DA=AB,∠A=∠ABC=∠CBE=90°,然后利用ASA即可证出△DFM≌△MBN,再根据全等三角形的性质即可得出结论.【详解】解:取DA的中点F,连接FM∵四边形是正方形∴DA=AB,∠A=∠ABC=∠CBE=90°∴∠FDM+∠AMD=90°∵∴∠BMN+∠AMD=90°∴∠FDM=∠BMN∵点F、M分别是DA、AB的中点∴DF=FA=DA=AB=AM=MB∴△AFM为等腰直角三角形∴∠AFM=45°∴∠DFM=180°-∠AFM=135°∵平分∴∠CBN==45°∴∠MBN=∠ABC+∠CBN=135°∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论