上海闵行区2025届数学高一上期末质量跟踪监视试题含解析_第1页
上海闵行区2025届数学高一上期末质量跟踪监视试题含解析_第2页
上海闵行区2025届数学高一上期末质量跟踪监视试题含解析_第3页
上海闵行区2025届数学高一上期末质量跟踪监视试题含解析_第4页
上海闵行区2025届数学高一上期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海闵行区2025届数学高一上期末质量跟踪监视试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数fx①fx的定义域是-②fx③fx在区间(0,+④fx的图像与gx=1其中正确的结论是()A.①② B.③④C.①②③ D.①②④2.为了得到函数的图象,只需把函数的图象上所有点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度3.中,设,,为中点,则A. B.C. D.4.设m,n为两条不同的直线,,为两个不同的平面,则下列结论正确的是()A.若,,则B.若,,,则C.若,,,则D.若,,,则5.化简的值是A. B.C. D.6.函数且的图象恒过定点()A.(-2,0) B.(-1,0)C.(0,-1) D.(-1,-2)7.已知,且,则的最小值为A. B.C. D.8.设则的大小关系是A. B.C. D.9.设集合,.若,则()A. B.C. D.10.已知两个正实数,满足,则的最小值是()A. B.C.8 D.3二、填空题:本大题共6小题,每小题5分,共30分。11.已知,α为锐角,则___________.12.函数是偶函数,且它的值域为,则__________13.已知幂函数的图象过点,则___________.14.若函数(,且),在上的最大值比最小值大,则______________.15.已知甲、乙、丙三人去参加某公司面试,他们被该公司录取的概率分别是,且三人录取结果相互之间没有影响,则他们三人中恰有两人被录取的概率为___________.16.已知角的终边过点,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知角的终边经过点(1)求的值;(2)求的值18.已知函数,.(1)若不等式的解集为,求不等式的解集;(2)若函数在区间上有两个不同的零点,求实数的取值范围19.在①两个相邻对称中心的距离为,②两条相邻对称轴的距离为,③两个相邻最高点的距离为,这三个条件中任选一个,补充在下面问题中,并对其求解问题:函数的图象过点,且满足__________.当时,,求的值.注:如果选择多个条件分别解答,按第一个解答计分20.某农户利用墙角线互相垂直的两面墙,将一块可折叠的长为am的篱笆墙围成一个鸡圈,篱笆的两个端点A,B分别在这两墙角线上,现有三种方案:方案甲:如图1,围成区域为三角形;方案乙:如图2,围成区域为矩形;方案丙:如图3,围成区域为梯形,且.(1)在方案乙、丙中,设,分别用x表示围成区域的面积,;(2)为使围成鸡圈面积最大,该农户应该选择哪一种方案,并说明理由.21.已知函数.(1)若,求的最大值;(2)若,求关于不等式的解集.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】可根据已知的函数解析式,通过求解函数的定义域、奇偶性、单调性和与gx=【详解】函数fx=x②选项,因为fx=x选项③,在区间0,+∞时,fx=xx2+1=1x+1x,而函数选项④,可通过画出fx的图像与gx=1故选:D.2、D【解析】利用三角函数图象的平移变换及诱导公式即可求解.【详解】将函数的图象向右平移个单位长度得到.故选:D.3、C【解析】分析:直接利用向量的三角形法则求.详解:由题得,故答案为C.点睛:(1)本题主要考查向量的加法和减法法则,意在考查学生对这些基础知识的掌握水平和转化能力.(2)向量的加法法则:,向量的减法法则:.4、D【解析】根据线面的位置关系可判断A;举反例判断B、C;由面面垂直的判定定理可判断D,进而可得正确选项.详解】对于A:若,,则或,故选项A不正确;对于B:如图平面为平面,平面为平面,直线为,直线为,满足,,,但与相交,故选项B不正确;对于C:如图在正方体中,平面为平面,平面为平面,直线为,直线为,满足,,,则,故选项C不正确;对于D:若,,可得或,若,因为,由面面垂直的判定定理可得;若,可过作平面与相交,则交线在平面内,且交线与平行,由可得交线与垂直,由面面垂直的判定定理可得,故选项D正确;故选:D.5、B【解析】利用终边相同角同名函数相同,可转化为求的余弦值即可.【详解】.故选B.【点睛】本题主要考查了三角函数中终边相同的角三角函数值相同及特殊角的三角函数值,属于容易题.6、A【解析】根据指数函数的图象恒过定点,即求得的图象所过的定点,得到答案【详解】由题意,函数且,令,解得,,的图象过定点故选:A7、C【解析】运用乘1法,可得由x+y=(x+1)+y﹣1=[(x+1)+y]•()﹣1,化简整理再由基本不等式即可得到最小值【详解】由x+y=(x+1)+y﹣1=[(x+1)+y]•1﹣1=[(x+1)+y]•2()﹣1=2(21≥3+47当且仅当x,y=4取得最小值7故选C【点睛】本题考查基本不等式的运用:求最值,注意乘1法和满足的条件:一正二定三等,考查运算能力,属于中档题8、C【解析】由在区间是单调减函数可知,,又,故选.考点:1.指数函数的性质;2.函数值比较大小.9、C【解析】∵集合,,∴是方程的解,即∴∴,故选C10、A【解析】根据题中条件,得到,展开后根据基本不等式,即可得出结果.【详解】因为正实数满足,则,当且仅当,即时,等号成立.故选:【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由同角三角函数关系和诱导公式可得结果.【详解】因为,且为锐角,则,所以,故.故答案为:.12、【解析】展开,由是偶函数得到或,分别讨论和时的值域,确定,的值,求出结果.【详解】解:为偶函数,所以,即或,当时,值域不符合,所以不成立;当时,,若值域为,则,所以.故答案为:.13、【解析】由幂函数的解析式的形式可求出和的值,再将点代入可求的值,即可求解.【详解】因为是幂函数,所以,,又的图象过点,所以,解得,所以.故答案为:.14、或.【解析】分和两种情况,根据指数函数的单调性确定最大值和最小值,根据已知得到关于实数的方程求解即得.【详解】若,则函数在区间上单调递减,所以,,由题意得,又,故;若,则函数在区间上单调递增,所以,,由题意得,又,故.所以的值为或.【点睛】本题考查函数的最值问题,涉及指数函数的性质,和分类讨论思想,属基础题,关键在于根据指数函数的底数的不同情况确定函数的单调性.15、##0.15【解析】利用相互独立事件概率乘法公式分别求出甲和乙被录取的概率、甲和丙被录取的概率、乙和丙被录取的概率,然后即可求出他们三人中恰有两人被录取的概率.【详解】因为甲、乙、丙三人被该公司录取的概率分别是,且三人录取结果相互之间没有影响,甲和乙被录取的概率为,甲和丙被录取的概率为,乙和丙被录取的概率为则他们三人中恰有两人被录取的概率为,故答案为:.16、【解析】根据角终边所过的点,求得三角函数,即可求解.【详解】因为角的终边过点则所以故答案为:【点睛】本题考查了已知终边所过的点,求三角函数的方法,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,;(2).【解析】(1)直接利用三角函数的坐标定义求解;(2)化简,即得解.【小问1详解】解:,有,,;【小问2详解】解:,将代入,可得18、(1);(2)【解析】(1)根据二次函数与对应一元二次不等式的关系,求出a的值,再解不等式即可;(2)根据二次函数的图象与性质,列出不等式组,求出解集即可.【详解】(1)因为不等式的解集为,则方程的两个根为1和2,由根与系数的关系可得,,所以.由,得,即,解得或,所以不等式的解集为;(2)由题知函数,且在区间上有两个不同的零点,则,即,解得,所以实数的取值范围是【点睛】本题考查了二次函数的图象与性质的应用问题,也考查了不等式(组)的解法与应用问题,综合性较强,属中档题.19、选①②③,答案相同,均为【解析】选①②可以得到最小正周期,从而得到,结合图象过的点,可求出,从而得到,进而得到,接下来用凑角法求出的值;选③,可以直接得到最小正周期,接下来过程与选①②相同.【详解】选①②:由题意得:的最小正周期,则,结合,解得:,因为图象过点,所以,因为,所以,所以,因为,所以,因为,所以,所以,;选③:由题意得:的最小正周期,则,结合,解得:,因为图象过点,所以,因为,所以,所以,因为,所以,因为,所以,所以,;20、(1),;,.(2)农户应该选择方案三,理由见解析.【解析】(1)根据矩形面积与梯形的面积公式表示即可得答案;(2)先根据基本不等式研究方案甲得面积的最大值为,再根据二次函数的性质结合(1)研究,的最大值即可得答案.【小问1详解】解:对于方案乙,当时,,所以矩形的面积,;对于方案丙,当时,,由于所以,所以梯形面积为,.【小问2详解】解:对于方案甲,设,则,所以三角形的面积为,当且仅当时等号成立,故方案甲的鸡圈面积最大值为.对于方案乙,由(1)得,,当且仅当时取得最大值.故方案乙的鸡圈面积最大值为;对于方案丙,,.当且仅当时取得最

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论