山东省济南市历城区济钢高级中学2025届数学高二上期末学业质量监测模拟试题含解析_第1页
山东省济南市历城区济钢高级中学2025届数学高二上期末学业质量监测模拟试题含解析_第2页
山东省济南市历城区济钢高级中学2025届数学高二上期末学业质量监测模拟试题含解析_第3页
山东省济南市历城区济钢高级中学2025届数学高二上期末学业质量监测模拟试题含解析_第4页
山东省济南市历城区济钢高级中学2025届数学高二上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省济南市历城区济钢高级中学2025届数学高二上期末学业质量监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,,则与的等比中项为()A. B.C. D.2.已知条件,条件表示焦点在x轴上的椭圆,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既非充分也非必要条件3.函数的最小值是()A.2 B.4C.5 D.64.某学校随机抽取了部分学生,对他们每周使用手机的时间进行统计,得到如下的频率分布直方图.则下列说法:①;②若抽取100人,则平均用时13.75小时;③若从每周使用时间在,,三组内的学生中用分层抽样的方法选取8人进行访谈,则应从使用时间在内的学生中选取的人数为3.其中正确的序号是()A.①② B.①③C.②③ D.①②③5.命题“∀x∈R,|x|+x2≥0”的否定是()A.∀x∈R,|x|+x2<0 B.∀x∈R,|x|+x2≤0C.∃x0∈R,|x0|+<0 D.∃x0∈R,|x0|+≥06.下列通项公式中,对应数列是递增数列的是()A B.C. D.7.倾斜角为45°,在y轴上的截距为-1的直线方程是()A.x-y+1=0 B.x-y-1=0C.x+y-1=0 D.x+y+1=08.椭圆上的点P到直线x+2y-9=0的最短距离为()A. B.C. D.9.已知椭圆:的离心率为,则实数()A. B.C. D.10.已知命题,命题,,则下列命题中为真命题的是A. B.C. D.11.双曲线(,)的一条渐近线的倾斜角为,则离心率为()A. B.C.2 D.412.有下列四个命题,其中真命题是()A., B.,,C.,, D.,二、填空题:本题共4小题,每小题5分,共20分。13.等差数列的公差,是其前n项和,给出下列命题:若,且,则和都是中的最大项;给定n,对于一些,都有;存在使和同号;.其中正确命题的序号为___________.14.若和或都是假命题,则的范围是__________15.已知向量、满足,,且,则与的夹角为___________.16.如图,在三棱锥P–ABC的平面展开图中,AC=1,,AB⊥AC,AB⊥AD,∠CAE=30°,则cos∠FCB=______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆F:经过点且离心率为,直线和是分别过椭圆F的左、右焦点的两条动直线,它们与椭圆分别相交于点A、B和C、D,O为坐标原点,直线AB和直线CD相交于M.记直线的斜率分别为,且(1)求椭圆F标准方程(2)是否存在定点P,Q,使得为定值.若存在,请求出P、Q的坐标,若不存在,请说明理由18.(12分)已知椭圆的离心率为,椭圆的短轴端点与双曲线的焦点重合,过点的直线与椭圆相交于、两点.(1)求椭圆的方程;(2)若以为直径的圆过坐标原点,求的值.19.(12分)如图,在四棱锥P-ABCD中,PD=2AD=4,PD⊥CD,PD⊥AD,底面ABCD为正方形,M、N、Q分别为AD、PD、BC的中点(1)证明:面PAQ//面MNC;(2)求二面角M-NC-D的余弦值20.(12分)已知函数,.(1)若在单调递增,求的取值范围;(2)若,求证:.21.(12分)已知椭圆,四点中,恰有三点在椭圆上(1)求椭圆的方程;(2)设直线不经过点,且与椭圆相交于不同的两点.若直线与直线的斜率之和为,证明:直线过一定点,并求此定点坐标22.(10分)已知点是抛物线C:上的点,F为抛物线的焦点,且,直线l:与抛物线C相交于不同的两点A,B.(1)求抛物线C的方程;(2)若,求k的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用等比中项的定义可求得结果.【详解】由题意可知,与的等比中项为.故选:C.2、A【解析】根据条件,求得a的范围,根据充分、必要条件的定义,即可得答案.【详解】因为条件表示焦点在x轴上的椭圆,所以,解得或,所以条件是条件q:或的充分不必要条件.故选:A3、C【解析】结合基本不等式求得所求的最小值.【详解】,,当且仅当时等号成立.故选:C4、B【解析】根据频率分布直方图中小矩形的面积和为1可求出,再求出频率分布直方图的平均值,即为抽取100人的平均值的估计值,再利用分层抽样可确定出使用时间在内的学生中选取的人数为3.【详解】,故①正确;根据频率分布直方图可估计出平均值为,所以估计抽取100人的平均用时13.75小时,②的说法太绝对,故②错误;每周使用时间在,,三组内的学生的比例为,用分层抽样的方法选取8人进行访谈,则应从使用时间在内的学生中选取的人数为,故③正确.故选:B.5、C【解析】利用全称命题的否定可得出结论.【详解】由全称命题的否定可知,命题“,”的否定是“,”.故选:C.6、C【解析】根据数列单调性的定义逐项判断即可.【详解】对于A,B选项对应数列是递减数列.对于C选项,,故数列是递增数列.对于D选项,由于.所以数列不是递增数列故选:C.7、B【解析】由题意,,所以,即,故选B8、A【解析】与已知直线平行,与椭圆相切的直线有二条,一条距离最短,一条距离最长,利用相切,求出直线的常数项,再计算平行线间的距离即可.【详解】设与已知直线平行,与椭圆相切的直线为,则所以所以椭圆上点P到直线的最短距离为故选:A9、C【解析】根据题意,先求得的值,代入离心率公式,即可得答案.【详解】因为,所以所以,解得.故选:C10、D【解析】命题是假命题,命题是真命题,根据复合命题的真值表可判断真假.【详解】因为,故命题是假命题,又命题是真命题,故为假,为假,为假,为真命题,故选D.【点睛】复合命题的真假判断有如下规律:(1)或:一真比真,全假才假;(2)且:全真才真,一假比假;(3):真假相反.11、C【解析】根据双曲线方程写出渐近线方程,得出,进而可求出双曲线的离心率.【详解】因为双曲线的渐近线方程为,又其中一条渐近线的倾斜角为,所以,则,所以该双曲线离心率为.故选:C.12、B【解析】对于选项A,令即可验证其不正确;对于选项C、选项D,令,即可验证其均不正确,进而可得出结果.【详解】对于选项A,令,则,故A错;对于选项B,令,则,显然成立,故B正确;对于选项C,令,则显然无解,故C错;对于选项D,令,则显然不成立,故D错.故选B【点睛】本题主要考查命题真假的判定,用特殊值法验证即可,属于常考题型.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】对,根据数列的单调性和可判断;对和,利用等差数列的通项公式可直接推导;对,利用等差数列的前项和可直接推导.【详解】不妨设等差数列的首项为对,,可得:,解得:,即又,则是递减的,则中的前5项均为正数,所以和都是中的最大项,故正确;对,,故有:,故正确;对,,又,则,说明不存在使和同号,故错误;对,有:故并不是恒成立的,故错误故答案为:14、【解析】先由和或都是假命题,求出x的范围,取交集即可.【详解】若为假命题,则有或若或是假命题,则所以的范围是即的范围是胡答案:15、##【解析】根据向量数量积的计算公式即可计算.【详解】,,.故答案为:﹒16、【解析】在中,利用余弦定理可求得,可得出,利用勾股定理计算出、,可得出,然后在中利用余弦定理可求得的值.【详解】,,,由勾股定理得,同理得,,在中,,,,由余弦定理得,,在中,,,,由余弦定理得.故答案为:.【点睛】本题考查利用余弦定理解三角形,考查计算能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)存在点,使得为定值.【解析】(1)设,,,结合条件即求;(2)由题可设直线方程,利用韦达定理法可得,再结合条件可得点的轨迹方程为,然后利用椭圆的定义即得结论.【小问1详解】设,,,椭圆方程为:,椭圆过点,,解得t=1,所以椭圆F的方程是【小问2详解】由题可得焦点的坐标分别为,当直线AB或CD的斜率不存在时,点M的坐标为或,当直线AB和CD的斜率都存在时,设斜率分别为,点,直线AB为,联立,得则,,同理可得,,因为,所以,化简得由题意,知,所以设点,则,所以,化简得,当直线或的斜率不存在时,点M的坐标为或,也满足此方程所以点在椭圆上,根据椭圆定义可知,存在定点,使得为定值【点睛】关键点点睛:本题的关键是利用韦达定理法及题设条件求出点M的轨迹方程,再结合椭圆的定义,从而问题得到解决.18、(1);(2)【解析】(1)由离心率得到,由椭圆的短轴端点与双曲线的焦点重合,得到,进而可求出结果;(2)先由题意,得直线的斜率存在,设直线的方程为,联立直线与椭圆方程,设,根据韦达定理,得到,,再由以为直径的圆过坐标原点,得到,进而可求出结果.详解】(1)由题意知,∴,即,又双曲线的焦点坐标为,椭圆的短轴端点与双曲线的焦点重合,所以,∴,故椭圆的方程为.(2)解:由题意知直线的斜率存在,设直线的方程为由得:由得:设,则,,∴因为以为直径的圆过坐标原点,所以,.满足条件故.【点睛】本题主要考查椭圆的方程,以及椭圆的应用,熟记椭圆的标准方程,以及椭圆的简单性质即可,解决此类问题时,通常需要联立直线与椭圆方程,结合韦达定理、判别式等求解,属于常考题型.19、(1)证明过程见解析(2)【解析】(1)由线线平行证明线面平行;(2)建立空间直角坐标系,利用空间向量进行求解二面角的余弦值.【小问1详解】因为M,N是DA,PD的中点,所以MN//AP,因为平面PAQ,平面PAQ,所以MN//平面PAQ因为四边形ABCD为正方形,且Q为BC中点,所以MA//CQ,且MA=CQ,所以四边形MAQC为平行四边形,所以CM//AQ,因为平面PAQ,平面PAQ,所以MC//平面PAQ,因为,所以面PAQ//面MNC【小问2详解】因为PD⊥CD,PD⊥AD,AD⊥CD故以D为坐标原点,DA所在直线为x轴,DC所在直线为y轴,DP所在直线为z轴建立空间直角坐标系,则,,,设平面NMC的法向量为,则,令得:,所以,平面NDC的法向量为,则,设二面角M-NC-D的大小为,显然为锐角,则20、(1);(2)证明见解析.【解析】(1)由函数在上单调递增,则在上恒成立,由求解.(2)由(1)的结论,取,有,即在上恒成立,然后令,有求解.【详解】(1)因为函数在上单调递增,所以在上恒成立,则有在上恒成立,即.令函数,,所以时,,在上单调递增,所以,所以有,即,因此.(2)由(1)可知当时,为增函数,不妨取,则有在上单调递增,所以,即有在上恒成立,令,则有,所以,所以,因此.【点睛】方法点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号,当f(x)含参数时,需依据参数取值对不等式解集的影响进行分类讨论.(2)若可导函数f(x)在指定的区间D上单调递增(减),求参数范围问题,可转化为f′(x)≥0(或f′(x)≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到21、(1)(2)证明见解析,定点【解析】(1)先判断出在椭圆上,再代入求椭圆方程;(2)假设斜率存在,设出直线,利用斜率之和为,求出之间的关系,即可求出定点,再说明斜率不存在时,直线仍过该点即可.【小问1详解】由对称性同时在椭圆上或同时不在椭圆上,从而在椭圆上,因此不在椭圆上,故在椭圆上,将,代入椭圆的方程,解得,所以椭圆的方程为【小问2详解】当直线斜率存在时,令方程为,由得所以得方程为,过定点当直线斜率不存在时,令方程为,由,即解得此时直线方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论