湖南省汨罗市2025届高二数学第一学期期末考试试题含解析_第1页
湖南省汨罗市2025届高二数学第一学期期末考试试题含解析_第2页
湖南省汨罗市2025届高二数学第一学期期末考试试题含解析_第3页
湖南省汨罗市2025届高二数学第一学期期末考试试题含解析_第4页
湖南省汨罗市2025届高二数学第一学期期末考试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省汨罗市2025届高二数学第一学期期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知、分别是椭圆的左、右焦点,A是椭圆上一动点,圆C与的延长线、的延长线以及线段相切,若为其中一个切点,则()A. B.C. D.与2的大小关系不确定2.设为坐标原点,直线与抛物线C:交于,两点,若,则的焦点坐标为()A. B.C. D.3.已知点是点在坐标平面内的射影,则点的坐标为()A. B.C. D.4.命题“∀x∈R,|x|+x2≥0”的否定是()A.∀x∈R,|x|+x2<0 B.∀x∈R,|x|+x2≤0C.∃x0∈R,|x0|+<0 D.∃x0∈R,|x0|+≥05.若直线与圆:相切,则()A.-2 B.-2或6C.2 D.-6或26.若函数,当时,平均变化率为3,则等于()A. B.2C.3 D.17.已知直线:和:,若,则实数的值为()A. B.3C.-1或3 D.-18.已知双曲线满足,且与椭圆有公共焦点,则双曲线的方程为()A. B.C. D.9.在棱长为4的正方体中,为的中点,点P在正方体各棱及表面上运动且满足,则点P轨迹围成的图形的面积为()A. B.C. D.10.已知各项都为正数的等比数列,其公比为q,前n项和为,满足,且是与的等差中项,则下列选项正确的是()A. B.C D.11.设直线与双曲线(,)的两条渐近线分别交于,两点,若点满足,则该双曲线的离心率是()A. B.C. D.12.若数列的前n项和(n∈N*),则=()A.20 B.30C.40 D.50二、填空题:本题共4小题,每小题5分,共20分。13.圆心为直线与直线的交点,且过原点的圆的标准方程是________14.有一组数据:,其平均数是,则其方差是________.15.已知椭圆的长轴在轴上,若焦距为4,则__________.16.如图,茎叶图所示数据平均分为91,则数字x应该是__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的左右焦点分别为,,点在椭圆上,与轴垂直,且(1)求椭圆的方程;(2)若点在椭圆上,且,求的面积18.(12分)某书店刚刚上市了《中国古代数学史》,销售前该书店拟定了5种单价进行试销,每种单价(元)试销l天,得到如表单价(元)与销量(册)数据:单价(元)1819202122销量(册)6156504845(l)根据表中数据,请建立关于的回归直线方程:(2)预计今后的销售中,销量(册)与单价(元)服从(l)中的回归方程,已知每册书的成本是12元,书店为了获得最大利润,该册书的单价应定为多少元?附:,,,.19.(12分)已知斜率为1的直线交抛物线:()于,两点,且弦中点的纵坐标为2.(1)求抛物线的标准方程;(2)记点,过点作两条直线,分别交抛物线于,(,不同于点)两点,且的平分线与轴垂直,求证:直线的斜率为定值.20.(12分)已知函数.(1)讨论函数的单调性;(2)若恒成立,求实数的取值范围.21.(12分)已知正项等差数列满足,(1)求数列的通项公式;(2)设,求数列的前项和22.(10分)如图,在半径为6m的圆形O为圆心铝皮上截取一块矩形材料OABC,其中点B在圆弧上,点A,C在两半径上,现将此矩形铝皮OABC卷成一个以AB为母线的圆柱形罐子的侧面不计剪裁和拼接损耗,设矩形的边长|AB|xm,圆柱的体积为Vm3.(1)写出体积V关于x的函数关系式,并指出定义域;(2)当x为何值时,才能使做出的圆柱形罐子的体积V最大最大体积是多少?

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由题意知,圆C是的旁切圆,点是圆C与轴的切点,设圆C与直线的延长线、分别相切于点、,由切线的性质可知:,,,结合椭圆的定义,即可得出结果.【详解】由题意知,圆C是的旁切圆,点是圆C与轴的切点,设圆C与直线的延长线、分别相切于点、,则由切线的性质可知:,,,所以,所以,所以.故选A【点睛】本题主要考查圆与圆锥曲线的综合,熟记椭圆的定义,以及切线的性质即可,属于常考题型.2、B【解析】根据题中所给的条件,结合抛物线的对称性,可知,从而可以确定出点的坐标,代入方程求得的值,进而求得其焦点坐标,得到结果.【详解】因为直线与抛物线交于两点,且,根据抛物线的对称性可以确定,所以,代入抛物线方程,求得,所以其焦点坐标为,故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.3、D【解析】根据空间中射影的定义即可得到答案.【详解】因为点是点在坐标平面内的射影,所以的竖坐标为0,横、纵坐标与A点的横、纵坐标相同,所以点的坐标为.故选:D4、C【解析】利用全称命题的否定可得出结论.【详解】由全称命题的否定可知,命题“,”的否定是“,”.故选:C.5、B【解析】利用圆心到直线距离等于半径得到方程,解出的值.【详解】圆心为,半径为,由题意得:,解得:或6.故选:B6、B【解析】直接利用平均变化率的公式求解.【详解】解:由题得.故选:B7、D【解析】利用两直线平行列式求出a值,再验证即可判断作答.【详解】因,则,解得或,当时,与重合,不符合题意,当时,,符合题意,所以实数的值为-1.故选:D8、A【解析】根据椭圆的标准方程求出,利用双曲线,结合建立方程求出,,即可求出双曲线的渐近线方程【详解】椭圆的标准方程为,椭圆中的,双曲线的焦点与椭圆的焦点相同,双曲线中,双曲线满足,即又在双曲线中,即,解得:,所以双曲线的方程为,故选:A【点睛】关键点点睛:本题主要考查双曲线方程的求解,根据椭圆和双曲线的关系建立方程求出,,是解决本题的关键,考查学生的计算能力,属于基础题9、A【解析】构造辅助线,找到点P轨迹围成的图形为长方形,从而求出面积.【详解】取的中点E,的中点F,连接BE,EF,AF,则由于为的中点,可得,所以∠CBE=∠ECN,从而∠BCN+∠CBE=∠BCN+∠ECN=90°,所以BE⊥CN,又EF⊥平面,平面,所以EF⊥CN,又因为BEEF=E,所以CN⊥平面ABEF,所以点P轨迹围成的图形为矩形ABEF,又,所以矩形ABEF面积为.故选:A10、D【解析】根据题意求得,即可判断AB,再根据等比数列的通项公式即可判断C;再根据等比数列前项和公式即可判断D.【详解】解:因为各项都为正数的等比数列,,所以,又因是与的等差中项,所以,即,解得或(舍去),故B错误;所以,故A错误;所以,故C错误;所以,故D正确.故选:D.11、C【解析】先求出,的坐标,再求中点坐标,利用点满足,可得,从而求双曲线的离心率.【详解】解:由双曲线方程可知,渐近线为,分别于联立,解得:,,所以中点坐标为,因为点满足,所以,所以,即,所以.故选:C.【点睛】本题考查双曲线的离心率,考查直线与双曲线的位置关系,考查学生的计算能力,属于中档题.12、B【解析】由前项和公式直接作差可得.【详解】数列的前n项和(n∈N*),所以.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由,求得圆心,再根据圆过原点,求得半径即可.【详解】由,可得,即圆心为,又圆过原点,所以圆的半径,故圆的标准方程为故答案为:【点睛】本题主要考查圆的方程的求法,属于基础题.14、2【解析】先按照平均数算出a,再按照方差的定义计算即可。【详解】∵,所以,方差,故答案为:2.15、8【解析】根据椭圆方程列方程,解得结果.【详解】因为椭圆的长轴在轴上,焦距为4,所以故答案为:8【点睛】本题考查根据椭圆方程求参数,考查基本分析求解能力,属基础题.16、1【解析】结合茎叶图以及平均数列出方程,即可求出结果.【详解】由题意可知,解得,故答案为:1.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)由椭圆的性质求出,进而得出方程;(2)由,结合余弦定理求出,再由面积公式得出三角形的面积.【详解】解:(1),与轴垂直,,∴∴椭圆的方程为(2)由(1)知,∵,∴∴,∴的面积为【点睛】关键点睛:解决问题二的关键在于利用余弦定理结合完全平方和公式求出,进而得出面积.18、(1)(2)当单价应定为22.5元时,可获得最大利润【解析】(l)先计算的平均值,再代入公式计算得到(2)计算利润为:计算最大值.【详解】解:(1),,,所以对的回归直线方程为:(2)设获得的利润为,,因为二次函数的开口向下,所以当时,取最大值,所以当单价应定为22.5元时,可获得最大利润【点睛】本题考查了回归方程,函数的最值,意在考查学生的计算能力.19、(1);(2)见解析.【解析】(1)涉及中点弦,用点差法处理即可求得,进而求得抛物线方程;(2)由的平分线与轴垂直,可知直线,的斜率存在,且斜率互为相反数,且不等于零,设,直线,则直线分别和抛物线方程联立,解得利用,结合直线方程,即可证得直线的斜率为定值.【详解】(1)设,则,两式相减,得:由弦中点纵坐标为2,得,故.所以抛物线的标准方程.(2)由的平分线与轴垂直,可知直线,的斜率存在,且斜率互为相反数,且不等于零,设直线由得由点在抛物线上,可知上述方程的一个根为.即,同理.直线的斜率为定值.【点睛】本题考查应用点差法处理中点弦问题,直线与抛物线中,斜率为定值问题,考查分析问题的能力,考查学生的计算能力,难度较难.20、(1)当时,上单调递增;当时,在上单调递减,在上单调递增;当时,在上单调递减,在上单调递增.(2)【解析】(1)先求函数的定义域,再求导,根据导数即可求出函数的单调区间;(2)根据(1)的结论,分别求时的最小值,令,即可求出实数的取值范围.【小问1详解】易知函数的定义域为,,当时,,所以在上单调递增;当时,,令,得;令,得,所以在上单调递减,在上单调递增;当时,,令,得;令,得,所以在上单调递减,在上单调递增.【小问2详解】当时,成立,所以符合题意;当时,在上单调递减,在上单调递增,要使恒成立,则,解得;当时,在上单调递减,在上单调递增,要使恒成立,则,解得.综上所述,实数的取值范围是.21、(1);(2).【解析】(1)设数首项为,公差为,由,,列出方程组,求得,,即可求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论