版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省丽江市玉龙县第一中学2025届高一数学第一学期期末联考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一个几何体的三视图如图所示,则该几何体的表面积为A. B.C. D.2.设,则“”是“”的()A充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.若幂函数y=f(x)经过点(3,),则此函数在定义域上是A.偶函数 B.奇函数C.增函数 D.减函数4.已知a=20.1,b=log43.6,c=log30.3,则()A.a>b>c B.b>a>cC.a>c>b D.c>a>b5.已知且,则()A.有最小值 B.有最大值C.有最小值 D.有最大值6.用二分法求函数零点时,用计算器得到下表:1.001.251.3751.501.07940.1918-0.3604-0.9989则由表中数据,可得到函数的一个零点的近似值(精确度为0.1)为A.1.125 B.1.3125C.1.4375 D.1.468757.已知圆,圆,则两圆的位置关系为A.相离 B.相外切C.相交 D.相内切8.已知全集U={1,2,3,4,5,6},集合A={2,3,5,6},集合B={1,3,4,6},则集合A∩(∁UB)=()A.{2,5} B.{3,6}C.{2,5,6} D.{2,3,5,6}9.已知函数,则下列选项中正确的是()A.函数是单调增函数B.函数的值域为C.函数为偶函数D.函数的定义域为10.已知角的终边与单位圆的交点为,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设函数不等于0,若,则________.12.__________13.的化简结果为____________14.函数的单调递增区间是___________.15.已知正数a,b满足,则的最小值为______16.我国采用的“密位制”是6000密位制,即将一个圆周分为6000等份,每一个等份是一个密位,那么120密位等于______rad三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.甲乙两人用两颗质地均匀的骰子(各面依次标有数字1、2、3、4、5、6的正方体)做游戏,规则如下:若掷出的两颗骰子点数之和为3的倍数,则由原投掷人继续投掷,否则由对方接着投掷.第一次由甲投掷(1)求第二次仍由甲投掷的概率;(2)求游戏前4次中乙投掷的次数为2的概率18.已知函数(1)求的最小正周期和对称中心;(2)填上面表格并用“五点法”画出在一个周期内的图象19.某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为k),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为,三月底测得凤眼的覆盖面积为,凤眼莲的覆盖面积y(单位:)与月份x(单位:月)的关系有两个函数模型与可供选择(1)试判断哪个函数模型更合适并说明理由,求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份.(参考数据:)20.已知点,,,.(1)若,求的值;(2)若,求的值.21.已知集合,(1)求集合,;(2)若关于的不等式的解集为,求的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】该几何体为半圆柱,底面为半径为1的半圆,高为2,因此表面积为,选D.2、A【解析】根据充分条件、必要条件的概念求解即可.【详解】因为,所以由,,所以“”是“”成立的充分不必要条件故选:A3、D【解析】幂函数是经过点,设幂函数为,将点代入得到此时函数定义域上是减函数,故选D4、A【解析】直接判断范围,比较大小即可.【详解】,,,故a>b>c.故选:A.5、A【解析】根据,变形为,再利用不等式的基本性质得到,进而得到,然后由,利用基本不等式求解.【详解】因为,所以,所以,所以,所以,所以,当且仅当时取等号,故选:A.【点睛】思路点睛:本题思路是利用分离常数法转化为,再由,利用不等式的性质构造,再利用基本不等式求解.6、B【解析】根据二分法的思想,确定函数零点所在区间,并确保精确度为0.1即可.【详解】根据二分法的思想,因为,故的零点在区间内,但区间的长度为,不满足题意,因而取区间的中点,由表格知,故的零点在区间内,但区间的长度为,不满足题意,因而取区间的中点,可知区间和中必有一个存在的零点,而区间长度为,因此是一个近似解,故选:B.【点睛】本题考查二分法求零点问题,注意满足题意的区间要满足两个条件:①区间端点的函数值要异号;②区间长度要小于精确度0.1.7、A【解析】利用半径之和与圆心距的关系可得正确的选项.【详解】圆,即,圆心为(0,3),半径为1,圆,即,圆心为(4,0),半径为3..所以两圆相离,故选:A.8、A【解析】先求出∁UB,再求A∩(∁UB)即可.【详解】解:由已知∁UB={2,5},所以A∩(∁UB)={2,5}.故选:A.【点睛】本题考查集合的交集和补集的运算,是基础题.9、D【解析】应用换元法求的解析式,进而求其定义域、值域,并判断单调性、奇偶性,即可知正确选项.【详解】由题意,由,则,即.令,则∴,其定义域为不是偶函数,又故不单调增函数,易得,则,∴.故选:D10、A【解析】利用三角函数的定义得出和的值,由此可计算出的值.【详解】由三角函数的定义得,,因此,.故选:A.【点睛】本题考查三角函数的定义,考查计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】令,易证为奇函数,根据,可得,再根据,由此即可求出结果.【详解】函数的定义域为,令,则,即,所以为奇函数;又,所以,所以.故答案为:.12、2【解析】考点:对数与指数的运算性质13、18【解析】由指数幂的运算与对数运算法则,即可求出结果.【详解】因为.故答案为18【点睛】本题主要考查指数幂运算以及对数的运算,熟记运算法则即可,属于基础题型.14、##【解析】求出函数的定义域,利用复合函数法可求得函数的单调递增区间.【详解】由得,解得,所以函数的定义域为.设内层函数,对称轴方程为,抛物线开口向下,函数在区间上单调递增,在区间上单调递减,外层函数为减函数,所以函数的单调递增区间为.故答案为:.15、##【解析】右边化简可得,利用基本不等式,计算化简即可求得结果.【详解】,故,则,当且仅当时,等号成立故答案为:16、##【解析】根据已知定义,结合弧度制的定义进行求解即可.【详解】设120密位等于,所以有,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由题意利用古典概型求概率的计算公式求得结果(2)游戏的前4次中乙投掷的次数为2,包含3种情况,根据独立事件的乘法公式及互斥事件的加法公式,可计算结果【小问1详解】求第二次仍由甲投,说明第一次掷出的点数之和为3的倍数,所有的情况共有种,其中,掷出的点数之和为3的倍数的情况有、、、、、,、、、、、,共计12种情况,故第二次仍由甲投掷的概率为【小问2详解】由(1)可得掷出的两颗骰子点数之和为3的倍数的概率为,所以两颗骰子点数之和不为3的倍数的概率为,游戏的前4次中乙投掷的次数为2,可能乙投掷的次数为第二次第三次,则概率为,或第二次第四次,则概率为,或第三次第四次,则概率为,以上三个事件互斥,所以其概率为.18、(1),它的对称中心为,(2)答案见解析.【解析】(1):根据二倍角与辅助角公式化简函数为一名一角即可求解;(2):根据五点法定义列表作图即可【小问1详解】∴函数的最小正周期;令,,解得,,可得它的对称中心为,【小问2详解】x0010019、(1)理由见解析,函数模型为;(2)六月份.【解析】(1)由凤眼莲在湖中的蔓延速度越来越快,故选符合要求,根据数据时,时代入即可得解;(2)首先求时,可得元旦放入凤眼莲的覆盖面积是,解不等式即可得解.【详解】(1)两个函数与在上都是增函数,随着的增加,指数型函数的值增加速度越来越快,而函数的值增加越来越慢,由凤眼莲在湖中的蔓延速度越来越快,故选符合要求;由时,由时,可得,解得,故该函数模型的解析式为;(2)当时,,元放入凤眼莲的覆盖面积是,由,得所以,由,所以.所以凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份是六月份.20、(1)(2)【解析】(1)利用列方程,化简求得.(2)利用列方程,结合同角三角函数的基本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 行业展会的国际合作与对外宣传策略
- 激励制度在推动创新人才发展中的实践
- 汇报支持方法在学术会议报告中的应用
- 智能化办公环境下的科技创新
- 小学数学奥数教育的教师角色与素质要求
- 教育领域中的绿色展览实践
- 2025年度租赁汽车合同协议书包含驾驶员培训及考核
- 2025年度风电场升级改造桩基施工劳务分包工程合同
- 2025年度新能源车版委托贷款合同
- 2025年度短片演员聘用合同范本(独立制作)
- 2025年人教五四新版八年级物理上册阶段测试试卷含答案
- 2025新人教版英语七年级下单词表(小学部分)
- 2025年春季1530安全教育记录主题
- 矿山2025年安全工作计划
- 2025年包装印刷项目可行性研究报告
- 2025年九年级物理中考复习计划
- 企业融资报告特斯拉成功案例分享
- 2024年《论教育》全文课件
- 给客户的福利合同(2篇)
- 销售调味品工作总结5篇
- 2024年江苏省劳动合同条例
评论
0/150
提交评论