2025届广东省东莞外国语学校高一上数学期末预测试题含解析_第1页
2025届广东省东莞外国语学校高一上数学期末预测试题含解析_第2页
2025届广东省东莞外国语学校高一上数学期末预测试题含解析_第3页
2025届广东省东莞外国语学校高一上数学期末预测试题含解析_第4页
2025届广东省东莞外国语学校高一上数学期末预测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届广东省东莞外国语学校高一上数学期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的定义域为()A.(-∞,4) B.[4,+∞)C.(-∞,4] D.(-∞,1)∪(1,4]2.已知、、是的三个内角,若,则是A.钝角三角形 B.锐角三角形C.直角三角形 D.任意三角形3.()A.0 B.1C.6 D.4.设为全集,是集合,则“存在集合使得是“”的A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件5.已知是定义在上的奇函数,且当时,,那么A. B.C. D.6.已知幂函数的图象过点,则该函数的解析式为()A. B.C. D.7.一个机器零件的三视图如图所示,其中侧视图是一个半圆与边长为的正方形,俯视图是一个半圆内切于边长为的正方形.若该机器零件的表面积为,则的值为A.4 B.2C.8 D.68.已知函数则()A.- B.2C.4 D.119.已知直线是函数图象的一条对称轴,的最小正周期不小于,则的一个单调递增区间为()A. B.C. D.10.已知函数是定义在上的偶函数,且在上单调递增,若,则不等式解集为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知定义在R上的函数满足,且当时,,若对任都有,则m的取值范围是_________12.计算:_______13.已知幂函数的图像过点,则的解析式为=__________14.函数的图象一定过定点P,则P点的坐标是______15.已知扇形周长为4,圆心角为,则扇形面积为__________.16.已知向量=(1,2)、=(2,λ),,∥,则λ=______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是上的奇函数(1)求;(2)用定义法讨论在上的单调性;(3)若在上恒成立,求的取值范围18.降噪耳机主要有主动降噪耳机和被动降噪耳机两种.其中主动降噪耳机的工作原理是:先通过微型麦克风采集周围的噪声,然后降噪芯片生成与噪声振幅相同、相位相反的反向声波来抵消噪声(如图所示).已知某噪声的声波曲线是,其中的振幅为2,且经过点.(1)求该噪声声波曲线的解析式以及降噪芯片生成的降噪声波曲线的解析式;(2)将函数图象上各点的横坐标变为原来的倍,纵坐标不变得到函数的图象.若锐角满足,求的值.19.已知函数(Ⅰ)求函数的单调递减区间;(Ⅱ)若函数的图象向右平移个单位长度后,所得的图象对应的函数为,且当,时,,求的值20.已知直线(1)求直线的斜率;(2)若直线m与平行,且过点,求m方程.21.已知函数,它的部分图象如图所示.(1)求函数的解析式;(2)当时,求函数的值域.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据函数式的性质可得,即可得定义域;【详解】根据的解析式,有:解之得:且;故选:D【点睛】本题考查了具体函数定义域的求法,属于简单题;2、A【解析】依题意,可知B,C中有一角为钝角,从而可得答案详解】∵A是△ABC的一个内角,∴sinA>0,又sinAcosBtanC<0,∴cosBtanC<0,∴B,C中有一角为钝角,故△ABC为钝角三角形故选A【点睛】本题考查三角形的形状判断,求得B,C中有一角为钝角是判断的关键,属于中档题3、B【解析】首先根据对数的运算法则,对式子进行相应的变形、整理,求得结果即可.【详解】,故选B.【点睛】该题考查的是有关对数的运算求值问题,涉及到的知识点有对数的运算法则,熟练掌握对数的运算法则是解题的关键.4、C【解析】①当,,且,则,反之当,必有.②当,,且,则,反之,若,则,,所以.③当,则;反之,,.综上所述,“存在集合使得是“”的充要条件.考点:集合与集合的关系,充分条件与必要条件判断,容易题.5、C【解析】由题意得,,故,故选C考点:分段函数的应用.6、C【解析】设出幂函数的解析式,根据点求得解析式.【详解】设,依题意,所以.故选:C7、A【解析】几何体为一个正方体与四分之一个球的组合体,所以表面积为,选A点睛:空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理(3)旋转体的表面积问题注意其侧面展开图的应用8、C【解析】根据分段函数的分段条件,先求得,进而求得的值,得到答案.【详解】由题意,函数,可得,所以.故选:C.【点睛】本题主要考查了分段函数的求值问题,其中解答中根据分段函数的分段条件,代入准确运算是解答的关键,着重考查运算与求解能力.9、B【解析】由周期得出的范围,再由对称轴方程求得值,然后由正弦函数性质确定单调性【详解】根据题意,,所以,,,所以,,故,所以.令,,得,.令,得的一个单调递增区间为.故选:B10、B【解析】,又函数是定义在上的偶函数,且在上单调递增,所以,解得.考点:偶函数的性质.【思路点睛】本题主要考查不等式的求解,利用函数奇偶性和单调性的性质进行转化是解决本题的关键.根据函数奇偶性可得,再根据函数的单调性,可得;然后再解不等式即可求出结果二、填空题:本大题共6小题,每小题5分,共30分。11、,【解析】作出当,时,的图象,将其图象分别向左、向右平移个单位(横坐标不变,纵坐标变为原来的或2倍),得到函数的图象,令,求得的最大值,可得所求范围【详解】解:因为满足,即;又由,可得,画出当,时,的图象,将在,的图象向右平移个单位(横坐标不变,纵坐标变为原来的2倍),再向左平移个单位(横坐标不变,纵坐标变为原来的倍),由此得到函数的图象如图:当,时,,,,又,所以,令,由图像可得,则,解得,所以当时,满足对任意的,,都有,故的范围为,故答案为:,12、【解析】求出的值,求解计算即可.【详解】故答案为:13、##【解析】根据幂函数的定义设函数解析式,将点的坐标代入求解即可.【详解】由题意知,设幂函数的解析式为为常数),则,解得,所以.故答案为:14、(1,4)【解析】已知过定点,由向右平移个单位,向上平移个单位即可得,故根据平移可得到定点.【详解】由向右平移个单位,向上平移个单位得到,过定点,则过定点.【点睛】本题考查指数函数的图象恒过定点以及函数图象的平移问题.图象平移,定点也随之平移,平移后仍是定点.15、1【解析】利用扇形的弧长公式求半径,再由扇形面积公式求其面积即可.【详解】设扇形的半径为,则,可得,而扇形的弧长为,所以扇形面积为.故答案为:1.16、-2【解析】首先由的坐标,利用向量的坐标运算可得,接下来由向量平行的坐标运算可得,求解即可得结果【详解】∵,∴,∵∥,,∴,解得,故答案为:-2三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)是上的增函数;(3).【解析】(1)利用奇函数的定义直接求解即可;(2)用函数的单调性的定义,结合指数函数的单调性直接求解即可;(3)利用函数的奇函数的性质、单调性原问题可以转化为在上恒成立,利用换元法,再转化为一元二次不等式恒成立问题,分类讨论,最后求出的取值范围.【详解】(1)函数是上的奇函数即即解得;(2)由(1)知设,则故,,故即是上的增函数(3)是上的奇函数,是上的增函数在上恒成立等价于等价于在上恒成立即在上恒成立“*”令则“*”式等价于对时恒成立“**”①当,即时“**”为对时恒成立②当,即时,“**”对时恒成立须或解得综上,的取值范围是【点睛】本题考查了奇函数的定义,考查了函数单调性的定义,考查了指数函数的单调性的应用,考查了不等式恒成立问题,考查了换元法,考查了数学运算能力.18、(1),(2)【解析】(1)利用函数的振幅求得,代入求得的值,从而求得函数,利用对称性求得函数;(2)利用三角函数图像变换求得,由得,利用同角三角函数的基本关系式及两角和与差的三角公式求得结果.【小问1详解】解:由振幅为2知,,代入有,,而,而与关于轴对称,【小问2详解】由已知,,,而,故,.19、(Ⅰ),;(Ⅱ).【解析】Ⅰ由三角函数的单调性可得函数的单调递减区间;Ⅱ由三角函数图象的平移得的解析式,由诱导公式及角的范围得:,所以,代入运算得解【详解】Ⅰ由,解得:,即函数的单调递减区间为:,;Ⅱ将函数的图象向右平移个单位长度后,所得的图象对应的函数为,得,又,即,由,,得:,,由诱导公式可得,所以,所以,【点睛】本题考查了三角函数的单调性及三角函数图象的平移变换,涉及到诱导公式的应用及三角函数求值问题,属于中档题20、(1);(2).【解析】(1)将直线变形为斜截式即可得斜率;(2)由平行可得斜率,再由点斜式可得结果.【详解】(1)由,可得,所以斜率为;(2)由直线m与平行,且过点,可得m的方程为,整理得:.21、(1);(2).【解析】(1)依题意,则,将点的坐标代入函数的解析式可得,故,函数解析式为.(2)由题意可得,结合三角函数的性质可得函数的值域为.试题解析:(1)依题意,,故.将点的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论