




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省南昌市新建县第一中学2025届数学高二上期末复习检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.当圆的圆心到直线的距离最大时,()A B.C. D.2.刘老师在课堂中与学生探究某个圆时,有四位同学分别给出了一个结论.甲:该圆经过点.乙:该圆半径为.丙:该圆的圆心为.丁:该圆经过点,如果只有一位同学的结论是错误的,那么这位同学是()A.甲 B.乙C.丙 D.丁3.已知是公差为3的等差数列.若,,成等比数列,则的前10项和()A.165 B.138C.60 D.304.已知数列的前项和满足,记数列的前项和为,.则使得的值为()A. B.C. D.5.已知函数为偶函数,则在处的切线方程为()A. B.C. D.6.在平面上有一系列点,对每个正整数,点位于函数的图象上,以点为圆心的与轴都相切,且与彼此外切.若,且,,的前项之和为,则()A. B.C. D.7.曲线在处的切线如图所示,则()A.0 B.C. D.8.函数的极大值点为()A. B.C. D.不存在9.若,都为正实数,,则的最大值是()A. B.C. D.10.已知双曲线上的点到的距离为15,则点到点的距离为()A.7 B.23C.5或25 D.7或2311.已知函数是定义在上奇函数,,当时,有成立,则不等式的解集是()A. B.C. D.12.在矩形中,,在该矩形内任取一点M,则事件“”发生的概率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知球的表面积是,则该球的体积为________.14.若不等式的解集是,则的值是___________.15.已知A,B为x,y正半轴上的动点,且,O为坐标原点,现以为边长在第一象限做正方形,则的最大值为___________.16.已知函数,___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在多面体中,平面平面.四边形为正方形,四边形为梯形,且,,,(1)求证:;(2)求直线与平面所成角的正弦值;(3)线段上是否存在点,使得直线平面?若存在,求的值;若不存在,请说明理由18.(12分)已知三棱柱的侧棱垂直于底面,,,,,分别是,的中点.(Ⅰ)证明:平面;(Ⅱ)求二面角的余弦值.19.(12分)已知命题p:方程的曲线是焦点在y轴上的双曲线;命题q:方程无实根.若p或q为真,¬q为真,求实数m的取值范围.20.(12分)已知正项等差数列满足:,且,,成等比数列(1)求的通项公式;(2)设的前n项和为,且,求的前n项和21.(12分)已知点,直线,圆.(1)若连接点与圆心的直线与直线垂直,求实数的值;(2)若直线与圆相交于两点,且弦的长为,求实数的值22.(10分)已知幂函数在上单调递减,函数的定义域为集合A(1)求m的值;(2)当时,的值域为集合B,若是成立的充分不必要条件,求实数的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】求出圆心坐标和直线过定点,当圆心和定点的连线与直线垂直时满足题意,再利用两直线垂直,斜率乘积为-1求解即可.【详解】解:因为圆的圆心为,半径,又因为直线过定点A(-1,1),故当与直线垂直时,圆心到直线的距离最大,此时有,即,解得.故选:C.2、D【解析】分别假设甲、乙、丙、丁是错误的,看能否推出矛盾,进而推导出答案.【详解】假设甲的结论错误,根据丙和丁的结论,该圆的半径为6,与乙的结论矛盾;假设乙的结论错误,圆心到点的距离与圆心到点的距离不相等,不成立;假设丙的结论错误﹐点到点的距离大于,不成立;假设丁的结论错误,圆心到点的距离等于,成立.故选:D3、A【解析】由等差数列的定义与等比数列的性质求得首项,然后由等差数列的前项和公式计算【详解】因为,,成等比数列,所以,所以,解得,所以故选:A4、B【解析】由,求得,得到,结合裂项法求和,即可求解.【详解】数列的前项和满足,当时,;当时,,当时,适合上式,所以,则,所以.故选:B.5、A【解析】根据函数是偶函数可得,可求出,求出函数在处的导数值即为切线斜率,即可求出切线方程.【详解】函数为偶函数,,即,解得,,则,,且,切线方程为,整理得.故选:A.【点睛】本题考查函数奇偶性的应用,考查利用导数求切线方程,属于基础题.6、C【解析】根据两圆的几何关系及其圆心在函数的图象上,即可得到递推关系式,通过构造等差数列求得的通项公式,得出,最后利用裂项相消,求出数列前项和,即可求出.详解】由与彼此外切,则,,,又∵,∴,故为等差数列且,,则,,则,即,故答案选:.7、C【解析】由图示求出直线方程,然后求出,,即可求解.【详解】由直线经过,,可求出直线方程为:∵在处的切线∴,∴故选:C【点睛】用导数求切线方程常见类型:(1)在出的切线:为切点,直接写出切线方程:;(2)过出的切线:不是切点,先设切点,联立方程组,求出切点坐标,再写出切线方程:.8、B【解析】求导,令导数等于0,然后判断导数符号可得,或者根据对勾函数图象可解.【详解】令,得,因为时,,时,,所以时有极大值;当时,,时,,所以时有极小值.故选:B9、B【解析】由基本不等式,结合题中条件,直接求解,即可得出结果.【详解】因为,都为正实数,,所以,当且仅当,即时,取最大值.故选:D10、D【解析】根据双曲线的定义知,,即可求解.【详解】由题意,双曲线,可得焦点坐标,根据双曲线的定义知,,而,所以或故选:D【点睛】本题主要考查了双曲线的定义及其应用,其中解答中熟记双曲线的定义,列出方程是解答的关键,着重考查推理与运算能力,属于基础题.11、A【解析】构造函数,分析该函数的定义域与奇偶性,利用导数分析出函数在上为增函数,从而可知该函数在上为减函数,综合可得出原不等式的解集.【详解】令,则函数的定义域为,且,则函数为偶函数,所以,,当时,,所以,函数在上为增函数,故函数在上为减函数,由等价于或:当时,由可得;当时,由可得.综上所述,不等式的解集为.故选:A.12、D【解析】利用几何概型的概率公式,转化为面积比直接求解.【详解】以AB为直径作圆,当点M在圆外时,.所以事件“”发生的概率为.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设球的半径为r,代入表面积公式,可解得,代入体积公式,即可得答案.【详解】设球的半径为r,则表面积,解得,所以体积,故答案为:【点睛】本题考查已知球的表面积求体积,关键是求出半径,再进行求解,考查基础知识掌握程度,属基础题.14、【解析】利用和是方程的两根,再利用根与系数的关系即可求出和的值,即可得的值.【详解】由题意可得:方程的两根是和,由根与系数的关系可得:,所以,所以,故答案为:15、32【解析】建立平面直角坐标系,设出角度和边长,表达出点坐标,进而表达出,利用三角函数换元,求出最大值.【详解】如图,过点D作DE⊥x轴于点E,过点C作CF⊥y轴于点F,设,(),则由三角形全等可知,设,,则,则,,则,令,,则,当时,取得最大值,最大值为32故答案为:3216、【解析】直接利用分段函数的解析式即可求解.【详解】因为,所以,所以.故答案为:-1三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)(3)存在点,使得平面,且【解析】(1)由面面垂直的性质可得平面,再由线面垂直的性质可证得结论,(2)可证得两两垂直,所以分别以为轴,轴,轴建立空间直角坐标系,利用空间向量求解,(3)设,然后利用空间向量求解【小问1详解】证明:因为为正方形,所以又因为平面平面,且平面平面,所以平面平面所以;【小问2详解】由(1)可知,平面,所以,因为,所以两两垂直分别以为轴,轴,轴建立空间直角坐标系(如图)因为,,所以,所以,设平面的一个法向量为,则,即令,则,;所以设直线与平面所成角为,则直线与平面所成角为的正弦值为;【小问3详解】设,易知设,则,所以,所以,所以设平面的一个法向量为,则,因为,所以令,则,所以在线段上存在点,使得平面等价于存在,使得因为,由,所以,解得,所以线段上存在点,使得平面,且18、(1)见解析;(2).【解析】分析:依题意可知两两垂直,以点为原点建立空间直角坐标系,(1)利用直线的方向向量和平面的法向量垂直,即可证得线面平面;(2)求出两个平面的法向量,利用两个向量的夹角公式,即可求解二面角的余弦值.详解:依条件可知、、两两垂直,如图,以点为原点建立空间直角坐标系.根据条件容易求出如下各点坐标:,,,,,,,.(Ⅰ)证明:∵,,是平面的一个法向量,且,所以.又∵平面,∴平面;(Ⅱ)设是平面的法向量,因为,,由,得.解得平面的一个法向量,由已知,平面的一个法向量为,,∴二面角的余弦值是.点睛:本题考查了立体几何中的面面垂直的判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成.同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.19、.【解析】计算命题p:;命题;根据p或q为真,¬q为真得到真假,计算得到答案.【详解】若方程的曲线是焦点在轴上的双曲线,则满足,即,即,即若方程无实根,则判别式,即,得,即,即若为真,则为假,同时若或为真,则为真命题,即,得,即实数的取值范围是.【点睛】本题考查了命题的真假计算参数范围,根据条件判断出真假是解题的关键.20、(1);(2).【解析】(1)利用等差数列的通项公式结合条件即求;(2)利用条件可得,然后利用错位相减法即求.【小问1详解】设等差数列公差为d,由得,即,化简得,又,,成等比数列,则,即,将代入上式得,化简得,解得或-2(舍去),则,所以【小问2详解】∵,当时,,当时,,符合上式,则,所以,令,则,,∴,化简得综上,的前n项和21、(1)3(2)实数的值为和【解析】(1)由直线垂直,斜率乘积为可得值;(2)求出加以到直线的距离,由勾
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国计量大学现代科技学院《地理与文化》2023-2024学年第二学期期末试卷
- 湖南科技大学《国际品牌营销》2023-2024学年第二学期期末试卷
- 福建商学院《大学生就业与创业指导》2023-2024学年第二学期期末试卷
- 宿迁泽达职业技术学院《新药研究与注册》2023-2024学年第二学期期末试卷
- 电器公司提成方案(3篇)
- 室内顶棚改造方案(3篇)
- 爱心与奉献讲课件
- 城防监控维护方案(3篇)
- 成品凉亭改造方案(3篇)
- 物业照明运行方案(3篇)
- SOHO-VD 收获变频器手册
- 修理厂大修发动机保修合同
- 富血小板血浆(PRP)简介
- MOOC 网络技术与应用-南京邮电大学 中国大学慕课答案
- 电化学储能电站安全规程
- 四年级下册数学教案-8.1确定位置丨苏教版
- 乳粉大数据与智能制造
- 《初三中考动员会》课件
- 住培中医病例讨论-面瘫
- 迪士尼品牌经营策略研究方法
- 2023年厦门地理中考试卷及答案
评论
0/150
提交评论