2025届安徽省合肥市寿春中学数学高二上期末综合测试模拟试题含解析_第1页
2025届安徽省合肥市寿春中学数学高二上期末综合测试模拟试题含解析_第2页
2025届安徽省合肥市寿春中学数学高二上期末综合测试模拟试题含解析_第3页
2025届安徽省合肥市寿春中学数学高二上期末综合测试模拟试题含解析_第4页
2025届安徽省合肥市寿春中学数学高二上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届安徽省合肥市寿春中学数学高二上期末综合测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“中国剩余定理”又称“孙子定理”.1852年英国来华传教士伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2021这2020个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列,则此数列的项数为()A. B.C. D.2.如图,某圆锥的轴截面是等边三角形,点是底面圆周上的一点,且,点是的中点,则异面直线与所成角的余弦值是()A. B.C. D.3.已知向量,且,则()A. B.C. D.4.直线在y轴上的截距是A. B.C. D.5.设数列的前项和为,当时,,,成等差数列,若,且,则的最大值为()A. B.C. D.6.已知是抛物线的焦点,为抛物线上的动点,且的坐标为,则的最小值是A. B.C. D.7.函数图象的一个对称中心为()A. B.C. D.8.两圆与的公切线有()A.1条 B.2条C.3条 D.4条9.如图,四面体-,是底面△的重心,,则()A B.C. D.10.如图,在平行六面体中,设,,,用基底表示向量,则()A. B.C. D.11.在递增等比数列中,为其前n项和.已知,,且,则数列的公比为()A.3 B.4C.5 D.612.某研究所计划建设n个实验室,从第1实验室到第n实验室的建设费用依次构成等差数列,已知第7实验室比第2实验室的建设费用多15万元,第3实验室和第6实验室的建设费用共为61万元.现在总共有建设费用438万元,则该研究所最多可以建设的实验室个数是()A.10 B.11C.12 D.13二、填空题:本题共4小题,每小题5分,共20分。13.一个物体的运动方程为其中位移的单位是米,时间的单位是秒,那么物体在秒末的瞬时速度是__________米/秒14.阿波罗尼斯与阿基米德、欧几里得被称为亚历山大时期的数学三巨匠.“阿波罗尼斯圆”是他的代表成果之一:平面上动点P到两定点A,B的距离之比满足(且,t为常数),则点的轨迹为圆.已知在平面直角坐标系中,,,动点P满足,则P点的轨迹为圆,该圆方程为_________;过点的直线交圆于两点,且,则_________15.已知椭圆的离心率为.(1)证明:;(2)若点在椭圆的内部,过点的直线交椭圆于、两点,为线段的中点,且.①求直线的方程;②求椭圆的标准方程.16.设等差数列的前项和为,若,,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知是公差不为0的等差数列,其前项和为,,且,,成等比数列.(1)求和;(2)若,数列的前项和为,且对任意的恒成立,求实数的取值范围.18.(12分)已知圆C的圆心在x轴上,且经过点,.(1)求圆C的标准方程;(2)过斜率为的直线与圆C相交于M,N,两点,求弦MN的长.19.(12分)已知抛物线C:经过点.(1)求抛物线C的方程及其准线方程;(2)经过抛物线C的焦点F的直线l与抛物线交于两点M,N,且与抛物线的准线交于点Q.若,求直线l的方程.20.(12分)如图所示,四棱锥的底面为直角梯形,,,,,底面,为的中点(1)求证:平面平面;(2)求点到平面的距离21.(12分)设命题,,命题,.若p、q都为真命题,求实数m的取值范围.22.(10分)设正项数列的前项和为,已知,(1)求数列的通项公式;(2)数列满足,数列的前项和为,若不等式对一切恒成立,求的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由题设且,应用不等式求的范围,即可确定项数.【详解】由题设,且,所以,可得且.所以此数列的项数为.故选:C2、C【解析】建立空间直角坐标系,分别得到,然后根据空间向量夹角公式计算即可.【详解】以过点且垂直于平面的直线为轴,直线,分别为轴,轴,建立如图所示的空间直角坐标系.不妨设,则根据题意可得,,,,所以,,设异面直线与所成角为,则.故选:C.3、A【解析】利用空间向量共线的坐标表示即可求解.【详解】由题意可得,解得,所以.故选:A4、D【解析】在y轴上的截距只需令x=0求出y的值即可得出.【详解】令x=0,则y=-2,即直线在y周上的截距为-2,故选D.5、A【解析】根据等差中项写出式子,由递推式及求和公式写出和,进而得出结果.【详解】解:由,,成等差数列,可得,则,,,可得数列中,每隔两项求和是首项为,公差为的等差数列.则,,则的最大值可能为.由,,可得.因为,,,即,所以,则,当且仅当时,,符合题意,故的最大值为.故选:A.【点睛】本题考查等差数列的性质和递推式的应用,考查分析问题能力,属于难题.6、C【解析】由题意可得,抛物线的焦点,准线方程为过点作垂直于准线,为垂足,则由抛物线的定义可得,则,为锐角∴当最小时,最小,则当和抛物线相切时,最小设切点,由的导数为,则的斜率为.∴,则.∴,∴故选C点睛:本题主要考查抛物线的定义和几何性质,与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到焦点的距离与点到准线的距离的转化,这样可利用三角形相似,直角三角形中的锐角三角函数或是平行线段比例关系可求得距离弦长以及相关的最值等问题.7、D【解析】要求函数图象的一个对称中心的坐标,关键是求函数时的的值;令,根据余弦函数图象性质可得,此时可求出,然后对进行取值,进而结合选项即可得到答案.【详解】解:令,则解得,即,图象的对称中心为,令,即可得到图象的一个对称中心为故选:D【点睛】本题考查三角函数的对称中心,正弦函数的对称中心为,余弦函数的对称中心为.8、D【解析】求得圆心坐标分别为,半径分别为,根据圆圆的位置关系的判定方法,得出两圆的位置关系,即可求解.【详解】由题意,圆与圆,可得圆心坐标分别为,半径分别为,则,所以,可得圆外离,所以两圆共有4条切线.故选:D.9、B【解析】根据空间向量的加减运算推出,进而得出结果.【详解】因为,所以,故选:B10、B【解析】直接利用空间向量基本定理求解即可【详解】因为在平行六面体中,,,,所以,故选:B11、B【解析】由已知结合等比数列的性质可求出、,然后结合等比数列的求和公式求解即可.【详解】解:由题意得:是递增等比数列又,,故故选:B12、C【解析】根据等差数列通项公式,列出方程组,求出的值,进而求出令根据题意令,即可求解.【详解】设第n实验室的建设费用为万元,其中,则为等差数列,设公差为d,则由题意可得,解得,则.令,即,解得,又,所以,,所以最多可以建设12个实验室.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、5【解析】,14、①.②.【解析】设,根据可得圆的方程,利用垂径定理可求.【详解】设,则,整理得到,即.因为,故为的中点,过圆心作的垂线,垂足为,则为的中点,则,故,解得,故答案为:,.15、(1)证明见解析;(2)①;②.【解析】(1)由可证得结论成立;(2)①设点、,利用点差法可求得直线的斜率,利用点斜式可得出所求直线的方程;②将直线的方程与椭圆的方程联立,列出韦达定理,由可得出,利用平面向量数量积的坐标运算可得出关于的等式,可求出的值,即可得出椭圆的方程.【详解】(1),,因此,;(2)①由(1)知,椭圆的方程为,即,当在椭圆的内部时,,可得.设点、,则,所以,,由已知可得,两式作差得,所以,所以,直线方程为,即.所以,直线的方程为;②联立,消去可得.,由韦达定理可得,,又,而,,,解得合乎题意,故,因此,椭圆的方程为.16、77【解析】依题意利用等差中项求得,进而求得.【详解】依题意可得,则,故故答案为:77.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】(1)求出,即得数列的和;(2)由题得,再利用分组求和求出,得到,令,判断函数的单调性得解.【详解】(1)设数列的公差为,由已知得,,即,整理得,又,,;(2)由题意:,,,令,则,即对任意的恒成立,是单调递增数列,,只需,所以.【点睛】方法点睛:求数列的最值,常用数列的单调性求解,求数列的单调性,一般利用定义法作差或作商判断.18、(1)(2)【解析】(1)由圆的性质可得圆心在线段的垂直平分线上,由题意求出的垂直平分线方程,从而得出圆心坐标,再求出半径,得到答案.(2)由题意先求出满足条件的直线方程,求出圆心到直线的距离,由垂经定理可得圆的弦长.【小问1详解】由题意设圆C的标准方程为设的中点为,则,由圆的性质可得则,又,所以则直线的方程为,即则圆C的圆心在直线上,即,故所以圆心,半径所以圆C的标准方程为【小问2详解】过斜率为的直线方程为:圆心到该直线的距离为所以19、(1)抛物线C的方程为,准线方程为(2)或.【解析】(1)将点代入抛物线求出即可得出抛物线方程和准线方程;(2)设出直线方程,与抛物线联立,表示出弦长和即可求出.【小问1详解】将代入可得,解得,所以抛物线C的方程为,准线方程为;【小问2详解】由题得,设直线方程为,,设,联立方程,可得,则,所以,因为直线与准线交于点Q,则,则,因为,所以,解得,所以直线l的方程为或.20、(1)证明见解析(2)【解析】(1)设与交点为,延长交的延长线于点,进而根据证明,再结合底面得,进而证明平面即可证明结论;(2)由得点到平面的距离等于点到平面的距离的,进而过作,垂足为,结合(1)得点到平面的距离等于,再在中根据等面积法求解即可.【小问1详解】证明:设与交点为,延长交的延长线于点,因为四棱锥的底面为直角梯形,,所以,所以,因为为的中点,所以,因为所以,所以,所以,所以,又因为,所以,又因为,所以,所以,所以又因为底面,所以,因为,所以平面,因为平面,所以平面平面【小问2详解】解:由于,所以,点到平面的距离等于点到平面的距离的,因为平面平面,平面平面故过作,垂足为,所以,平面,所以点到平面的距离等于在中,,所以,点到平面的距离等于.21、【解析】先求出命题为真时,的取值范围,再取交集可得答案.【详解】若命题,为真命题,则,解得;若命题,为真命题,则命题,为假命题,即方程无实数根,因此,,解得.又p、q都为真命题,所以实数m的取值范围是.【点睛】本题考查全称命题与特

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论