版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页广东省广州市天河外国语学校2024-2025学年数学九年级第一学期开学质量检测试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)方程的根是()A. B. C. D.,2、(4分)下列二次根式化简的结果正确的是()A. B. C. D.3、(4分)下面四个图形中,不是轴对称图形的是(
)A.
B.
C.
D.4、(4分)关于正比例函数y=﹣3x,下列结论正确的是()A.图象不经过原点 B.y随x的增大而增大C.图象经过第二、四象限 D.当x=13时,y=5、(4分)下列说法中,正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线相等的平行四边形是矩形D.对角线互相垂直的平行四边形是矩形6、(4分)下列图案中,既是轴对称图形又是中心对称图形的是()A. B. C. D.7、(4分)如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数y=(x<0)的图象经过点C,则k的值为()A.24 B.-12 C.-6 D.±68、(4分)如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则劣弧AC的长是()A.4π B.2π C.π D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在中,,点D,E,F分别是AB,AC,BC边上的中点,连结BE,DF,已知则_________.10、(4分)小明用四根长度相同的木条制作了能够活动的菱形学具,他先把活动学具成为图1所示菱形,并测得∠B=60°,接着活动学具成为图2所示正方形,并测得正方形的对角线AC=2acm,则图1中对角线AC的长为11、(4分)如图,在平行四边形纸片中,,将纸片沿对角线对折,边与边交于点,此时恰为等边三角形,则重叠部分的面积为_________.12、(4分)如图,矩形ABCD中,,,CB在数轴上,点C表示的数是,若以点C为圆心,对角线CA的长为半径作弧交数轴的正半轴于点P,则点P表示的数是______.13、(4分)如图,已知函数y=3x+b和y=ax-3的图象交于点P(-2,-5),则根据图象可得不等式3x+b>ax-3的解集是________.三、解答题(本大题共5个小题,共48分)14、(12分)先化简(-m-2)÷,然后从-2<m≤2中选一个合适的整数作为m的值代入求值.15、(8分)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为9cm,则FG=_____cm.16、(8分)求证:菱形的对角线互相垂直.17、(10分)在数学兴趣小组活动中,小明进行数学探究活动.将大小不相同的正方形ABCD与正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.(1)小明发现DG=BE且DG⊥BE,请你给出证明;(2)如图2,小明将正方形ABCD绕点A转动,当点B恰好落在线段DG上时①猜想线段DG和BE的位置关系是.②若AD=2,AE=,求△ADG的面积.18、(10分)如图所示,每个小正方形的边长为1cm(1)求四边形ABCD的面积;(2)四边形ABCD中有直角吗?若有,请说明理由.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,已知边长为4的菱形ABCD中,AC=BC,E,F分别为AB,AD边上的动点,满足BE=AF,连接EF交AC于点G,CE、CF分别交BD与点M,N,给出下列结论:①∠AFC=∠AGE;②EF=BE+DF;③△ECF面积的最小值为3,④若AF=2,则BM=MN=DN;⑤若AF=1,则EF=3FG;其中所有正确结论的序号是_____.20、(4分)已知反比例函数y=(k≠0)的图象在第二、四象限,则k的值可以是:____(写出一个满足条件的k的值).21、(4分)已知一次函数y=ax+b的图象如图所示,根据图中信息请写出不等式ax+b≥2的解集为___________.22、(4分)如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.23、(4分)如图,矩形中,,,点是边上一点,连接,把沿折叠,使点落在点处.当为直角三角形时,则的长为________.二、解答题(本大题共3个小题,共30分)24、(8分)已知,如图,O为正方形对角线的交点,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连结DF,交BE的延长线于点G,连结OG.(1)求证:△BCE≌△DCF.(2)判断OG与BF有什么关系,证明你的结论.(3)若DF2=8-4,求正方形ABCD的面积?25、(10分)如图所示,四边形ABCD是平行四边形,已知DE平分∠ADC,交AB于点E,过点E作EF∥AD,交DC于F,求证:四边形AEFD是菱形.26、(12分)《九章算术》卷九“勾股”中记载:今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问霞长几何.注释:今有正方形水池边长1丈,芦苇生长在中央,长出水面1尺.将芦苇向池岸牵引,恰好与水岸齐,问芦苇的长度(一丈等于10尺).解决下列问题:(1)示意图中,线段的长为______尺,线段的长为______尺;(2)求芦苇的长度.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】
此题用因式分解法比较简单,提取公因式,可得方程因式分解的形式,即可求解.【详解】解:x2−x=0,x(x−1)=0,解得x1=0,x2=1.故选:D.本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法,此题方程两边公因式较明显,所以本题运用的是因式分解法.2、B【解析】
二次根式的化简:①利用二次根式的基本性质进行化简;②利用积的算术平方根的性质和商的算术平方根的性质进行化简.【详解】解:,故A错误;,故B正确;,故C错误;,故D错误.故选:.本题考查了二次根式化简,熟练掌握化简二次根式是解题的关键.3、C【解析】
轴对称图形即沿一条线折叠,被折叠成的两部分能够完全重合,根据轴对称图形的特点分别分析判断即可.【详解】ABD、都是关于一条竖直轴对称,是轴对称图形,不符合题意;C、两半颜色不一样,大小也不是关于一条轴对称,不是轴对称图形,符合题意;故答案为:C.此题主要考查轴对称图形的识别,解题的关键是熟知轴对称图形的定义.4、C【解析】
根据正比例函数的性质直接解答即可.【详解】解:A、显然当x=0时,y=0,故图象经过原点,错误;B、k<0,应y随x的增大而减小,错误;C、k<0,图解经过二、四象限,正确;D、把x=13代入,得:y=-1故选C.本题考查了正比例函数的性质,解题的关键是了解正比例函数的比例系数的符号与正比例函数的关系.5、C【解析】
根据菱形和矩形的判定定理即可得出答案.【详解】解:A.对角线相等的平行四边形是矩形,所以A错误;B.对角线互相垂直的平行四边形是菱形,所以B错误;C.对角线相等的平行四边形是矩形,所以C正确;D.对角线互相垂直的平行四边形是菱形,所以D错误;故选C.本题考查特殊平行四边形中菱形与矩形的判定,注意区分特殊平行四边形的判定方法是解题关键.6、B【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;
B、是轴对称图形,也是中心对称图形,故此选项正确;
C、不是轴对称图形,是中心对称图形,故此选项错误;
D、不是轴对称图形,是中心对称图形,故此选项错误.
故选B.考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7、C【解析】【分析】根据菱形性质求出C的坐标,再代入解析式求k的值.【详解】∵菱形的两条对角线的长分别是6和4,∴C(﹣3,2).∵点C在反比例函数y=(x<0)的图象上,∴,解得k=-6.故选:C【点睛】本题考核知识点:菱形和反比例函数.解题关键点:利用菱形性质求C的坐标.8、B【解析】
如图,连接AO,BO,先求出∠AOC的长,再根据弧长公式求出的长即可.【详解】如图,连接AO,BO,根据题意可知,∠CDA=180°-∠B=180°-135°=45°,∴∠AOC=2∠CDA=90°,∴.故选B.本题主要考查弧与圆周角的关系、圆周角定理以及弧长公式,求出∠AOC的大小是解答本题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】
已知BE是Rt△ABC斜边AC的中线,那么BE=AC;EF是△ABC的中位线,则DF=AC,则DF=BE=1.【详解】解:,E为AC的中点,,分别为AB,BC的中点,.故答案为:1.此题主要考查了三角形中位线定理以及直角三角形斜边上的中线等知识,用到的知识点为:(1)直角三角形斜边的中线等于斜边的一半;(2)三角形的中位线等于对应边的一半.10、a【解析】
如图1,2中,连接AC.在图2中,理由勾股定理求出BC,在图1中,只要证明△ABC是等边三角形即可解决问题.【详解】如图1,2中,连接AC.在图2中,∵四边形ABCD是正方形,∴AB=BC,∠B=90°,∵AC=40°,∴AB=BC=a,在图1中,∵∠B=60°,BA=BC,∴△ABC是等边三角形,∴AC=BC=a.故答案为:a.此题考查菱形的性质,正方形的性质,解题关键在于作辅助线.11、【解析】
首先根据等边三角形的性质可得AB'=AE=EB',∠B'=∠B'EA=60°,根据折叠的性质,∠BCA=∠B'CA,,再证明∠B'AC=90°,再证得S△AEC=S△AEB',再求S△AB'C进而可得答案.【详解】解:∵为等边三角形,∴AB'=AE=EB',∠B'=∠B'EA=60°,
根据折叠的性质,∠BCA=∠B'CA,
∵四边形ABCD是平行四边形,
∴AD//BC,AD=BC,AB=CD,
∴∠B'EA=∠B'CB,∠EAC=∠BCA,
∴∠ECA=∠BCA=30°,∴∠EAC=30°,
∴∠B'AC=90°,
∵,
∴B'C=8,∴AC==,
∵B'E=AE=EC,∴S△AEC=S△AEB'=S△AB'C=××4×=,故答案为.此题主要考查了平行四边形的性质、直角三角形的性质以及翻折变换,关键是掌握平行四边形的对边平行且相等,直角三角形30°角所对的边等于斜边的一半.12、【解析】
利用勾股定理求AC,再求出PO,从而求出P所表示的数.【详解】解:由勾股定理可得:AC=,因为,PC=AC,所以,PO=,所以,点P表示的数是.故答案为本题考核知识点:在数轴上表示无理数.解题关键点:利用勾股定理求出线段长度.13、x>-2【解析】
根据一次函数的图象和两函数的交点坐标即可得出答案.【详解】解:观察图象知,当x>-2时,y=3x+b的图象在y=ax-3的图象的上方,故该不等式的解集为x>-2故答案为:x>-2本题考查了议程函数与一元一次不等式的应用,主要考查学生的观察能力和理解能力,题型较好,难度不大.三、解答题(本大题共5个小题,共48分)14、,.【解析】
根据分式的减法和除法可以化简题目中的式子,然后在中选一个使得原分式有意义的整数作为m的值代入化简后的式子即可解答本题.【详解】分式的分母不能为0解得因此,从中选,代入得:原式.(答案不唯一)本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法.15、【解析】
作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′=4.5,首先证明△AKC′≌△GFM,可得GF=AK,由AN=6cm,A′N=3cm,C′K∥A′N,推出,可得,得出C′K=2cm,在Rt△AC′K中,根据AK=,求出AK即可解决问题.【详解】解:作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′,
∵GF⊥AA′,
∴∠AFG+∠FAK=90°,∠MGF+∠MFG=90°,
∴∠MGF=∠KAC′,
∴△AKC′≌△GFM,
∴GF=AK,
∵AN=cm,A′N=cm,C′K∥A′N,
∴,
∴,
∴C′K=1.5cm,
在Rt△AC′K中,AK===cm,
∴FG=AK=cm,
故答案为.本题考查翻折变换、正方形的性质、矩形的性质、全等三角形的判定和性质等知识,解题关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.16、详见解析【解析】
根据AD=AB,OD=OB,AO=AO,推得△AOD≌△AOB,所以对角线AC,BD互相垂直.【详解】已知:菱形ABCD中,AC,BD交于点O,求证:AC⊥BD.证明:∵四边形ABCD是菱形,∴AD=AB,OD=OB,又∵AO=AO,∴△AOD≌△AOB(SSS),∴∠AOD=∠AOB,又∵∠AOD+∠AOB=180°,∴∠AOD=90°,即
AC⊥BD.故菱形的对角线互相垂直.此题考查全等三角形的判定与性质,解题关键在于掌握判定定理.17、(1)详见解析;(2)①DG⊥BE;②1.【解析】
(1)利用正方形得到条件,判断出△ADG≌△ABE,根据全等三角形的性质即可得到结论;(2)①同理证明△ADG≌△ABE,根据全等三角形的性质即可得到结论;②分别计算DM、MG和AM的长,根据三角形面积可得结论.【详解】证明:(1)如图1,延长EB交DG于点H,∵四边形ABCD与四边形AEFG是正方形,∴AD=AB,∠DAG=∠BAE=90°,AG=AE在△ADG与△ABE中,,∴△ADG≌△ABE(SAS),∴∠AGD=∠AEB,DG=BE,∵△ADG中,∠AGD+∠ADG=90°,∴∠AEB+∠ADG=90°,∵△DEH中,∠AEB+∠ADG+∠DHE=180°,∴∠DHE=90°,∴DG⊥BE;(2)①DG⊥BE,理由是:如图2,∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAB=∠GAE=90°,AG=AE,∴∠DAB+∠BAG=∠GAE+∠BAG,即∠DAG=∠BAE,在△ADG和△ABE中,,∴△ADG≌△ABE(SAS),∴∠ABE=∠ADG∴∠DBE=∠ABE+∠ABD=∠ABD+∠ADG=90°,∴DG⊥BE;故答案为DG⊥BE;②如图2,过点A作AM⊥DG交DG于点M,∠AMD=∠AMG=90°,∵BD是正方形ABCD的对角线,∴∠MDA=41°在Rt△AMD中,∵∠MDA=41°,AD=2,∴AM=DM=2,在Rt△AMG中,∵AM2+GM2=AG2∴GM==3,∵DG=DM+GM=2+3=1,∴S△ADG=DG•AM=×1×2=1.此题是四边形的综合题,考查了旋转的性质和正方形的性质,用到的知识点是旋转的性质、全等三角形的判定,勾股定理和正方形的性质,难度适中,关键是根据题意画出辅助线,构造直角三角形.18、(1)14;(2)四边形ABCD中有直角.【解析】
(1)根据四边形ABCD的面积=S矩形AEFH-S△AEB-S△BFC-S△CGD-S梯形AHGD即可得出结论;(2)四边形ABCD中有直角.根据勾股定理得到BC=2,CD=,BD=5,再根据勾股定理的逆定理即可求解.【详解】解:(1)如图,∵四边形ABCD的面积=S矩形AEFH-S△AEB-S△BFC-S△CGD-S梯形AHGD=5×5-×1×5-×2×4-×1×2-×(1+5)×1=14;(2)四边形ABCD中有直角.理由:连结BD,由勾股定理得:BC=2,CD=,BD=5,∵BD2=BC2+CD2,∴∠C=90°,∴四边形ABCD中有直角.本题考查的是勾股定理的逆定理、勾股定理,熟知勾股定理及勾股定理的逆定理是解答此题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、①③④【解析】
由“SAS”可证△BEC≌△AFC,再证△EFC是等边三角形,由外角的性质可证∠AFC=∠AGE;由点E在AB上运动,可得BE+DF≥EF;由等边三角形的性质可得△ECF面积的EC2,则当EC⊥AB时,△ECF的最小值为3;由等边三角形的性质和菱形的性质可求MN=BD﹣BM﹣DN=,由平行线分线段成比例可求EG=3FG,即可求解.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD=4,∵AC=BC,∴AB=BC=CD=AD=AC,∴△ABC,△ACD是等边三角形,∴∠ABC=∠BAC=∠ACB=∠DAC=60°,∵AC=BC,∠ABC=∠DAC,AF=BE,∴△BEC≌△AFC(SAS)∴CF=CE,∠BCE=∠ACF,∴∠ECF=∠BCA=60°,∴△EFC是等边三角形,∴∠EFC=60°,∵∠AFC=∠AFE+∠EFC=60°+∠AFE,∠AGE=∠AFE+∠CAD=60°+∠AFE,∴∠AFC=∠AGE,故①正确;∵BE+DF=AF+DF=AD,EF=CF≤AC,∴BE+DF≥EF(当点E与点B重合时,BE+DF=EF),故②不正确;∵△ECF是等边三角形,∴△ECF面积的EC2,∴当EC⊥AB时,△ECF面积有最小值,此时,EC=2,△ECF面积的最小值为3,故③正确;如图,设AC与BD的交点为O,若AF=2,则FD=BE=AE=2,∴点E为AB中点,点F为AD中点,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO,∠ABO=∠ABC=30°,∴AO=AB=2,BO=AO=2,∴BD=4,∵△ABC是等边三角形,BE=AE=2,∴CE⊥AB,且∠ABO=30°,∴BE=EM=2,BM=2EM,∴BM=,同理可得DN=,∴MN=BD﹣BM﹣DN=,∴BM=MN=DN,故④正确;如图,过点E作EH∥AD,交AC于H,∵AF=BE=1,∴AE=3,∵EH∥AD∥BC,∴∠AEH=∠ABC=60°,∠AHE=∠ACB=60°,∴△AEH是等边三角形,∴EH=AE=3,∵AD∥EH,∴,∴EG=3FG,故⑤错误,故答案为:①③④本题是四边形综合题,考查菱形的性质,等边三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理等知识,添加辅助线是解题的关键.20、-1(答案不唯一)【解析】
由反比例函数的性质:当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限可写出一个满足条件的k的值.【详解】解:∵函数图象在二四象限,∴k<0,∴k可以是-1.故答案为-1(答案不唯一).本题考查了反比例函数图象的性质(1)反比例函数y=(k≠0)的图象是双曲线;(1)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.21、x≥1.【解析】试题分析:根据题意得当x≥1时,ax+b≥2,即不等式ax+b≥2的解集为x≥1.故答案为x≥1.考点:一次函数与一元一次不等式.22、1.【解析】在Rt△ABC中,AB=5米,BC=3米,∠ACB=90°,
∴AC=∴AC+BC=3+4=1米.
故答案是:1.23、或【解析】
当△CB′E为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=10,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=6,可计算出CB′=4,设BE=x,则EB′=x,CE=8-x,然后在Rt△CEB′中运用勾股定理可计算出x.再在Rt△ABE中,利用勾股定理可得AE的长②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.可得AB=BE,在Rt△ABE中,利用勾股定理可得AE的长.【详解】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=6,BC=8,∴AC=10,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=6,∴CB′=10-6=4;设BE=,则EB′=,CE=在Rt△CEB′中,由勾股定理可得:,解得:在Rt△ABE中,利用勾股定理可得:②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=6,∴在Rt△ABE中,利用勾股定理可得:综上所述,的长为或故答案为或本题考查了折叠问题:折叠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版存量房买卖合同履行监督居间协议3篇
- 2025年度生物医药厂房租赁居间服务协议书4篇
- 2025年度临时建筑拆除施工管理协议4篇
- 二零二五版生产线承包与工业互联网服务合同3篇
- 专业视频剪辑服务与许可合同(2024)版B版
- 2025年测绘仪器租赁与售后服务合同4篇
- 2025年度文化旅游区场地租赁及特色项目开发合同4篇
- 2025年度叉车租赁企业安全生产责任合同4篇
- 2025年度工业自动化设备租赁合同书(二零二五版)4篇
- 2025年度太阳能发电站拆除与新能源设施安装合同4篇
- 2025年湖北武汉工程大学招聘6人历年高频重点提升(共500题)附带答案详解
- 【数 学】2024-2025学年北师大版数学七年级上册期末能力提升卷
- GB/T 26846-2024电动自行车用电动机和控制器的引出线及接插件
- 辽宁省沈阳市皇姑区2024-2025学年九年级上学期期末考试语文试题(含答案)
- 2024年国家工作人员学法用法考试题库及参考答案
- 妊娠咳嗽的临床特征
- 国家公务员考试(面试)试题及解答参考(2024年)
- 《阻燃材料与技术》课件 第6讲 阻燃纤维及织物
- 2024年金融理财-担保公司考试近5年真题附答案
- 泰山产业领军人才申报书
- 高中语文古代文学课件:先秦文学
评论
0/150
提交评论