版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页甘肃省陇南市第八中学2024年九年级数学第一学期开学监测试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)平行四边形具有的特征是()A.四个角都是直角 B.对角线相等C.对角线互相平分 D.四边相等2、(4分)在中,点、分别为边、的中点,则与的面积之比为A. B. C. D.3、(4分)在直角坐标系中,若点Q与点P(2,3)关于原点对称,则点Q的坐标是(
)A.(-2,3) B.(2,-3) C.(-2,-3) D.(-3,-2)4、(4分)使用同一种规格的下列地砖,不能进行平面镶嵌的是(
)A.正三角形地砖B.正四边形地砖C.正五边形地砖D.正六边形地砖5、(4分)如图,菱形的边长为2,∠ABC=45°,则点D的坐标为()A.(2,2) B.(2+,) C.(2,) D.(,)6、(4分)一个多边形的内角和与外角和相等,则这个多边形是()A.四边形 B.五边形 C.六边形 D.八边形7、(4分)如图,在正方形中,点为上一点,与交于点,若,则A.60° B.65° C.70° D.75°8、(4分)如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,点D在BC上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是()A.4 B.6 C.8 D.10二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)命题“若,则.”的逆命题是_____命题.(填“真”或“假”)10、(4分)若方程的解是正数,则m的取值范围_____.11、(4分)一次函数的图象与轴交于点________;与轴交于点______.12、(4分)在湖的两侧有A,B两个观湖亭,为测定它们之间的距离,小明在岸上任选一点C,并量取了AC中点D和BC中点E之间的距离为50米,则A,B之间的距离应为______米.13、(4分)如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为___三、解答题(本大题共5个小题,共48分)14、(12分)电商时代使得网购更加便捷和普及.小张响应国家号召,自主创业,开了家淘宝店.他购进一种成本为100元/件的新商品,在试销中发现:销售单价x(元)与每天销售量y(件)之间满足如图所示的关系.(1)求y与x之间的函数关系式;(2)若某天小张销售该产品获得的利润为1200元,求销售单价x的值.15、(8分)如图,菱形的对角线相交于点,,,相交于点.求证:四边形是矩形.16、(8分)菱形中,,,为上一个动点,,连接并延长交延长线于点.(1)如图1,求证:;(2)当为直角三角形时,求的长;(3)当为的中点,求的最小值.17、(10分)如图,矩形ABCD中,对角线AC与BD相交于点O.(1)写出与DO相反的向量______;(2)填空:AO+BC+OB=______;(3)求作:OC+AB(保留作图痕迹,不要求写作法).18、(10分)已知,正比例函数的图象与一次函数的图象交于点.(1)求,的值;(2)求一次函数的图象与,围成的三角形的面积.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)一个矩形的长比宽多1cm,面积是,则矩形的长为___________20、(4分)农科院对甲、乙两种甜玉米各10块试验田进行试验后,得到甲、乙两个品种每公顷的平均产量相同,而甲、乙两个品种产量的方差分别为,,则产量较为稳定的品种是_____________(填“甲”或“乙”).21、(4分)在菱形ABCD中,两条对角线AC与BD的和是1.菱形的边AB=5,则菱形ABCD的面积是_____.22、(4分)已知直线y=(k﹣2)x+k经过第一、二、四象限,则k的取值范围是______23、(4分)已知正方形的边长为1,如果将向量的运算结果记为向量,那么向量的长度为______二、解答题(本大题共3个小题,共30分)24、(8分)先化简,再求值:,其中x=﹣2+.25、(10分)母亲节前夕,某商店从厂家购进A、B两种礼盒,已知A、B两种礼盒的单价比为3:4,单价和为210元.(1)求A、B两种礼盒的单价分别是多少元?(2)该商店购进这两种礼盒恰好用去9900元,且购进A种礼盒最多36个,B种礼盒的数量不超过A种礼盒数量的2倍,共有几种进货方案?(3)根据市场行情,销售一个A钟礼盒可获利12元,销售一个B种礼盒可获利18元.为奉献爱心,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A种礼盒的利润不变,在(2)的条件下,要使礼盒全部售出后所有方案获利相同,m值是多少?此时店主获利多少元?26、(12分)如图,△ABC三个顶点的坐标分别是A1,1(1)请画出△ABC向左平移5个单位长度后得到的△A(2)请画出△ABC关于原点对称的△A(3)在x轴上求点P的坐标,使PA+PB的值最小.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
根据平行四边形的性质进行选择.【详解】平行四边形对角线互相平分,对边平行且相等,对角相等.故选C本题考核知识点:平行四边形性质.解题关键点:熟记平行四边形性质.2、C【解析】
由点D、E分别为边AB、AC的中点,可得出DE为△ABC的中位线,则DE∥BC,进而得出△ADE∽△ABC,再利用相似三角形的性质即可求出△ADE与△ABC的面积之比.【详解】如图所示,∵点D、E分别为边AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴.故选C.本题考查了相似三角形的判定与性质、三角形中位线定理,利用三角形的中位线定理找出DE∥BC是解题的关键.3、C【解析】
关于原点对称的坐标的特点为,横坐标和纵坐标都是互为相反数,据此解答即可.【详解】解:∵Q与P(2,3)关于原点对称,则Q(-2,-3).故答案为:C本题考查了平面直角坐标系中点的对称,掌握点的对称特点是解题的关键.4、C【解析】试题解析:A、正三角形的每个内角是60°,能整除360°,能密铺,故A不符合题意;
B、正四边形每个内角是90°,能整除360°,能密铺,故B不符合题意;
C、正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能密铺,故C符合题意;
D、正六边形每个内角是120°,能整除360°,能密铺,故D不符合题意.
故选C.5、B【解析】
根据坐标意义,点D坐标与垂线段有关,过点D向X轴垂线段DE,则OE、DE长即为点D坐标.【详解】过点D作DE⊥x轴,垂足为E,则∠CED=90°,∵四边形ABCD是菱形,∴AB//CD,∴∠DCE=∠ABC=45°,∴∠CDE=90°-∠DCE=45°=∠DCE,∴CE=DE,在Rt△CDE中,CD=2,CD2+DE2=CD2,∴CE=DE=,∴OE=OC+CE=2+,∴点D坐标为(2+,2),故选B.本题考查了坐标与图形性质、菱形的性质、等腰直角三角形的判定与性质,勾股定理等,正确添加辅助线是解题的关键.6、A【解析】多边形的内角和外角性质.【分析】设此多边形是n边形,∵多边形的外角和为360°,内角和为(n-2)180°,∴(n-2)180=360,解得:n=1.∴这个多边形是四边形.故选A.7、C【解析】
先证明△ABE≌△ADE,得到∠ADE=∠ABE=90°﹣25°=65°,在△ADE中利用三角形内角和180°可求∠AED度数.【详解】解:∵四边形ABCD是正方形,∴∠ABC=90°,BA=DA,∠BAE=∠DAE=45°.又AE=AE,∴△ABE≌△ADE(SAS).∴∠ADE=∠ABE=90°﹣25°=65°.∴∠AED=180°﹣45°﹣65°=70°.故选:C.本题主要考查了正方形的性质,解决正方形中角的问题一般会涉及对角线平分对角成45°.8、B【解析】
平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小,根据三角形中位线定理即可求解.【详解】解:平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小.∵OD⊥BC,BC⊥AB,∴OD∥AB,又∵OC=OA,∴OD是△ABC的中位线,∴OD=AB=3,∴DE=2OD=1.故选:B.此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半,正确理解DE最小的条件是关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、假【解析】
写出该命题的逆命题后判断正误即可.【详解】解:命题“若,则.”的逆命题是若a>b,则,例如:当a=3,b=-2时错误,为假命题,
故答案为:假.本题考查了命题与定理的知识,解题的关键是交换命题的题设写出该命题的逆命题.10、m>-2且m≠0【解析】分析:本题解出分式方程的解,根据题意解为正数并且解不能等于2,列出关于m的取值范围.解析:解方程解为正数,∴且m≠0.故答案为m>-2且m≠011、【解析】
分别令x,y为0,即可得出答案.【详解】解:∵当时,;当时,∴一次函数的图象与轴交于点,与轴交于点.故答案为:;.本题考查的知识点是一次函数与坐标轴的交点坐标,比较简单基础.12、1【解析】
根据三角形中位线的性质定理,解答即可.【详解】∵点D、E分别为AC、BC的中点,∴AB=2DE=1(米),故答案为:1.本题主要考查三角形中位线的性质定理,掌握三角形的中位线平行于第三边,且等于第三边长的一半,是解题的关键.13、【解析】
设CE=x,连接AE,由线段垂直平分线的性质可知AE=BE=BC+CE,在Rt△ACE中,利用勾股定理即可求出CE的长度,【详解】∵DE是线段AB的垂直平分线,∴AE=BE=BC+CE=3+x,∴在Rt△ACE中,AE2=AC2+CE2,即(3+x)2=42+x2,解得x=.三、解答题(本大题共5个小题,共48分)14、(1)y=−x+180;(2)120元或160元;【解析】
(1)设y与x之间的函数关系式为y=kx+b(k≠0),根据所给函数图象列出关于k、b的关系式,求出k、b的值即可;(2)根据题意列出方程,解方程即可.【详解】(1)设y与x之间的函数关系式为y=kx+b(k≠0),由所给函数图象可知:,解得:故y与x的函数关系式为y=−x+180;(2)由题意得:(−x+180)(x−100)=1200,解得:x=120,或x=160.答:若某天该网店店主销售该产品获得的利润为1200元,则销售单价为120元或160元.此题考查一元二次方程的应用,一次函数的应用,解题关键在于列出方程15、见解析.【解析】
首先判定四边形OAEB是平行四边形,再由菱形的性质得出∠AOB=90°,从而判定四边形OAEB是矩形.【详解】证明:∵,,∴四边形是平行四边形,又∵四边形是菱形,∴,∴,∴平行四边形是矩形.∴四边形是矩形本题考查了矩形的判定,菱形的性质,掌握矩形的判定和菱形的性质是解题的关键.16、(1)详见解析;(2)当为直角三角形时,的长是或;(3).【解析】
(1)先根据菱形的性质证,再证,由全等的性质可得,进而得出结论;(2)分以下两种情况讨论:①,②;(3)过作于,过作于,当三点在同一直线上且时的值最小,即为的长.【详解】解:(1)四边形是菱形,,,.在和中,,,.(2)连接交于点,四边形是菱形,,.又∠ABC=60°,∴△ABC为等边三角形,∴,.∴.∴.,.当时,有,在中,,设,,,,解得...当时,有,由知,是等腰直角三角形..综上:当为直角三角形时,的长是或.(3)过作于,过作于,在中,又是的中点,.当三点在同一直线上且时的值最小,即为的长.在中,,,,∴.的最小值是.本题主要考查菱形的性质,等边三角形的判定,以及菱形中线段和的最值问题,综合性较强.17、(1)OD,BO;(2)AC;(3)见解析.【解析】
(1)观察图形直接得到结果;(2)由AO+OB=AB,AB+BC=AC即可得到答案;(3)根据平行四边形法则即可求解.【详解】解:(1)与相反的向量有,.(2)∵+=,+=,∴++=.(3)如图,作平行四边形OBEC,连接AE,即为所求.故答案为(1)OD,BO;(2)AC;(3)见解析.本题考查了平面向量,平面向量知识在初中数学教材中只有沪教版等极少数版本中出现.18、(1),;(2)40.5【解析】
(1)把交点的坐标代入两个函数解析式计算即可得解;(2)设直线与交于点,则,一次函数与,分别交于点、,求出、两点的坐标,再根据三角形的面积公式列式计算即可.【详解】解:(1)正比例函数的图象与一次函数的图象交于点,,,解得,;(2)如图,设直线与交于点,则.一次函数的解析式为.设直线与,分别交于点、,当时,,.当时,,解得,..本题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了一次函数图象上点的坐标特征.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】
设宽为xcm,根据矩形的面积=长×宽列出方程解答即可.【详解】解:设宽为xcm,依题意得:
x(x+1)=132,
整理,得
(x+1)(x-11)=0,
解得x1=-1(舍去),x2=11,
则x+1=1.
答:矩形的长是1cm.本题考查了根据实际问题列出一元二次方程的知识,列一元二次方程的关键是找到实际问题中的相等关系.20、乙【解析】因为S甲2≈0.01>S乙2≈0.002,方差小的为乙,所以本题中比较稳定的是乙.21、2【解析】
根据菱形的对角线互相垂直,利用勾股定理列式求出AC•BD,再根利用菱形的面积等于对角线乘积的一半列式进行计算即可得解.【详解】如图,∵四边形ABCD是菱形,∴OA=AC,OB=BD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OA2+OB2=AB2,即(AC+BD)2﹣AC•BD=AB2,×12﹣AC•BD=52,AC•BD=48,故菱形ABCD的面积是48÷2=2.故答案为:2.本题考查了菱形的面积公式,菱形的对角线互相垂直平分线的性质,勾股定理的应用,比熟记性质是解题的关键.22、0<k<2【解析】
根据一次函数的定义即可解答.【详解】解:已知已知直线y=(k﹣2)x+k经过第一、二、四象限,故,即0<k<2.本题考查一次函数的定义与图像,较为简单.23、1【解析】
利用向量的三角形法则直接求得答案.【详解】如图:∵-==且||=1,∴||=1.故答案为:1.此题考查了平面向量,属于基础题,熟记三角形法则即可解答.二、解答题(本大题共3个小题,共30分)24、,【解析】
原式括号中两项通分并利用同分母分式的加减法则计算,再把除法转化成乘法约分即可得到结果.【详解】解:原式=÷=÷=×==﹣,当x=﹣2+时,原式=﹣=﹣=﹣.25、(1)A种礼盒单价为90元,B种礼盒单价为120元;(2)见解析;(3)1320元.【解析】
(1)利用A、B两种礼盒的单价比为3:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论