版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页福建省长泰一中学、华安一中学、龙海二中学2025届九年级数学第一学期开学综合测试模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,中,于点,于点,,,.则等于()A. B. C. D.2、(4分)用反证法证明“三角形中至少有一个内角大于或等于”时,应假设()A.三角形的二个内角小于 B.三角形的三个内角都小于C.三角形的二个内角大于 D.三角形的三个内角都大于3、(4分)历史上对勾股定理的一种证法采用了如图所示的图形,其中两个全等的直角三角形的直角边在同一条直线上.证明中用到的面积相等关系是()A. B.C. D.4、(4分)下列计算或化简正确的是()A. B.C. D.5、(4分)下列说法错误的是()A.必然事件发生的概率为1 B.不确定事件发生的概率为0.5C.不可能事件发生的概率为0 D.随机事件发生的概率介于0和1之间6、(4分)已知一次函数y=kx﹣k(k≠0),y随x的增大而增大,则该函数的图象大致是()A. B.C. D.7、(4分)若分式中的a、b的值同时扩大到原来的3倍,则分式的值()A.不变 B.是原来的3倍 C.是原来的6倍 D.是原来的9倍8、(4分)如图,△ABC的面积为1,分别取AC、BC两边的中点A1、B1,则四边形A1ABB1的面积为,再分别取A1C、B1C的中点A2、B2,取A2C、B2C的中点A3、B3,依次取下去…利用这一图形,能直观地计算出()A.1 B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,AO=2,BO=3,BC=4.将正方形沿箭头方向推,使点D落在y轴正半轴上点D’处,则点C的对应点C’的坐标为____.10、(4分)当_____时,分式的值为1.11、(4分)如果最简二次根式与是同类二次根式,那么a=________.12、(4分)化简:=_______________.13、(4分)如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是_____.三、解答题(本大题共5个小题,共48分)14、(12分)先化简,再求值:),其中.15、(8分)为了解某校九年级学生的理化实验操作情况,随机抽查了40名同学实验操作的得分.根据获取的样本数据,制作了如下的条形统计图和扇形统计图.请根据相关信息,解答下列问题.(1)①中的描述应为“6分m%”,其中的m值为_________;扇形①的圆心角的大小是______;(2)求这40个样本数据平均数、众数、中位数;(3)若该校九年级共有160名学生,估计该校理化实验操作得满分的学生有多少人.16、(8分)如图,在矩形ABCD中,E是对角线BD上一点(不与点B、D重合),过点E作EF∥AB,且EF=AB,连接AE、BF、CF。(1)若DE=DC,求证:四边形CDEF是菱形;(2)若AB=,BC=3,当四边形ABFE周长最小时,四边形CDEF的周长为__________。17、(10分)如图,直线y=x+b分别交x轴、y轴于点A、C,点P是直线AC与双曲线y=在第一象限内的交点,PB⊥x轴,垂足为点B,且OB=2,PB=1.(1)求反比例函数的解析式;(2)求△APB的面积;(3)求在第一象限内,当x取何值时一次函数的值小于反比例函数的值?18、(10分)已知:正方形ABCD中,对角线AC、BD交于点O,过O点的两直线OE、OF互相垂直,分别交AB、BC于E、F,连接EF.(1)求证:OE=OF;(2)若AE=4,CF=3,求EF的长;(3)若AB=8cm,请你计算四边形OEBF的面积.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)若b为常数,且﹣bx+1是完全平方式,那么b=_____.20、(4分)每本书的厚度为,把这些书摞在一起总厚度(单位:随书的本数的变化而变化,请写出关于的函数解析式__,(不用写自变量的取值范围)21、(4分)一组正整数2、3、4、x从小到大排列,已知这组数据的中位数和平均数相等,那么x的值是.22、(4分)小数0.00002l用科学记数法表示为_____.23、(4分)若二次根式在实数范围内有意义,则x的取值范围是_____.二、解答题(本大题共3个小题,共30分)24、(8分)小红同学经常要测量学校旗杆的高度,她发现旗杆的绳子刚好垂到地面上,当她把绳子下端拉开5m后,发现这时绳子的下端正好距地面1m,学校旗杆的高度是()A.21m B.13m C.10m D.8m25、(10分)先化简再求值:÷(﹣1),其中x=.26、(12分)如图,已知矩形ABCD中,E是AD上一点,F是AB上的一点,EF⊥EC,且EF=EC.(1)求证:△AEF≌△DCE.(2)若DE=4cm,矩形ABCD的周长为32cm,求AE的长.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】
由平行四边形的性质得出CD=AB=9,得出S▱ABCD=BC•AE=CD•AF,即可得出结果.【详解】∵四边形ABCD是平行四边形,∴CD=AB=9,∵AE⊥BC于点E,AF⊥CD于点F,AF=12,AE=8,∴S▱ABCD=BC•AE=CD•AF,即BC×8=9×12,解得:BC=;故选:B.此题考查了平行四边形的性质以及平行四边形的面积公式运用,此题难度适中,注意掌握方程思想与数形结合思想的应用.2、B【解析】
反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.【详解】反证法证明命题“三角形中至少有一个角大于或等于60°”时,首先应假设这个三角形中每一个内角都小于60°,故选:B.本题考查的是反证法的应用,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.3、D【解析】
用三角形的面积和、梯形的面积来表示这个图形的面积,从而证明勾股定理.【详解】解:∵由S△EDA+S△CDE+S△CEB=S四边形ABCD.
可知ab+c2+ab=(a+b)2,
∴c2+2ab=a2+2ab+b2,整理得a2+b2=c2,
∴证明中用到的面积相等关系是:S△EDA+S△CDE+S△CEB=S四边形ABCD.
故选D.本题考查勾股定理的证明依据.此类证明要转化成该图形面积的两种表示方法,从而转化成方程达到证明的结果.4、D【解析】解:A.不是同类二次根式,不能合并,故A错误;B.
,故B错误;C.,故C错误;D.,正确.故选D.5、B【解析】
A选项:∵必然事件发生的概率为1,故本选项正确;
B选项:∵不确定事件发生的概率介于1和0之间,故本选项错误;
C选项:∵不可能事件发生的概率为0,故本选项正确;
D选项:∵随机事件发生的概率介于0和1之间,故本选项正确;
故选B.6、B【解析】
一次函数的图象与性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.当b>0时,直线与y轴交于正半轴;当b<0时,直线与y轴交于负半轴.【详解】∵一次函数y=kx﹣k,y随x增大而增大,∴k>0,﹣k<0,∴此函数的图象经过一、三、四象限.故选B.本题主要考查了一次函数的图象与性质,熟练掌握一次函数的图像与系数的关系式解答本题的关键.7、B【解析】试题分析:根据分式的基本性质即可求出答案.解:原式=;故选B.点睛:本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.8、C【解析】
对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.【详解】解:∵A1、B1分别是AC、BC两边的中点,且△ABC的面积为1,∴△A1B1C的面积为∴四边形A1ABB1的面积=△ABC的面积-△A1B1C的面积
;∴四边形A2A1B1B2的面积=的面积-的面积
…∴第n个四边形的面积
∴故答案为:C本题主要考查了学生通过特例分析从而归纳总结出一般结论的能力.二、填空题(本大题共5个小题,每小题4分,共20分)9、(5,)【解析】
由题知从正方形变换到平行四边形时,边的长度没变,从而求出即可【详解】由题知从正方形变换到平行四边形时,AD’=AD=BC=4,D’C’=AB=5,∵AO=2,根据勾股定理,则OD’=,则D’(0,),故C’的坐标为(5,)熟练掌握图形变化中的不变边和勾股定理计算是解决本题的关键10、.【解析】
分式值为零的条件:分子为零且分母不为零,即且.【详解】分式的值为1且解得:故答案为.从以下三个方面透彻理解分式的概念:分式无意义分母为零;分式有意义分母不为零;分式值为零分子为零且分母不为零.11、1【解析】
根据同类二次根式可知,两个二次根式内的式子相等,从而得出a的值.【详解】∵最简二次根式与是同类二次根式∴1+a=4a-2解得:a=1故答案为:1.本题考查同类二次根式的应用,解题关键是得出1+a=4a-2.12、【解析】分析:首先将分式的分子和分母进行因式分解,然后进行约分化简得出答案.详解:原式=.点睛:本题主要考查的是分式的化简问题,属于基础题型.学会因式分解是解决这个问题的关键.13、x<﹣1【解析】
首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式﹣2x>ax+3的解集即可.【详解】解:∵函数y1=﹣2x过点A(m,2),∴﹣2m=2,解得:m=﹣1,∴A(﹣1,2),∴不等式﹣2x>ax+3的解集为x<﹣1.故答案为:x<﹣1.本题考查一次函数与一元一次不等式,关键是求出A点坐标.三、解答题(本大题共5个小题,共48分)14、,.【解析】试题分析:先通分,然后进行四则运算,最后将a的值代入计算即可.试题解析:原式===,当时,原式===.考点:分式的化简求值.15、(1)10;;(2)8.3;9;8;(3)28【解析】
(1)所占百分比=所求人数与总人数之比,即可求出m的值;再用乘以①所占的百分比,计算即可得解;(2)先计算出H的值,用总人数减去其他分数段的人数即可;根据平均数的定义求出平均数;众数是一组数据中出现次数最多的数据;找中位数要把数据从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数进行解答;(3)用九年级总学生人数乘以满分的人数所占的分数即可.【详解】解:(1),即m=10;故答案为:10;.(2)(人)平均数:(分);∵9出现了12次,次数最多,∴众数:9分;∵将40个数字按从小到大排列,中间第20、21两个数都是8,∴中位数:=8(分);故答案为:平均数8.3分,众数9分,中位数8分;(3)(人)故该校理化实验操作得满分的学生有28人.本题属于基础题,考查了统计图、扇形统计图、平均数、确定一组数据的中位数和众数的能力.从不同的统计图中得到必要的信息是解题的关键;找中位数的时候一定要注意先排好顺序,然后根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找到中间两位数的平均数.16、(1)见解析;(2)【解析】
(1)由CD//EF,CD=EF可证四边形CDEF是平行四边形,由于DE=DC可证四边形CDEF是菱形(2)当四边形ABFE周长最小时此时AE⊥BD,利用勾股定理可求BD、AE、ED的长度,进而求四边形CDEF的周长即可【详解】证明:(1)在矩形ABCD中CD∥AB,CD=AB,∵EF∥AB,EF=AB∴CD//EF,CD=EF∴四边形CDEF是平行四边形,又∵DE=DC∴四边形CDEF是菱形(2)在矩形ABCD中,∠BAD=90°,AD=BC=3∴当四边形ABFE周长最小时,AE⊥BD此时;BD=,∠AED=90°由(1)可知四边形CDEF是平行四边形四边形CDEF的周长为故:当四边形ABFE周长最小时,四边形CDEF的周长为本题考查了菱形的判定方法,熟练掌握菱形的判定方法是解题的关键.17、(1);(2)16;(3)0<x<2.【解析】
(1)由OB,PB的长,及P在第一象限,确定出P的坐标,由P在反比例函数图象上,将P的坐标代入反比例解析式中,即可求出k的值;(2)根据待定系数法求得直线AC的解析式,令y=0求出对应x的值,即为A的横坐标,确定出A的坐标,即可求得AB,然后根据三角形的面积公式求解即可;(3)由一次函数与反比例函数的交点P的横坐标为2,根据图象找出一次函数在反比例函数下方时x的范围即可.【详解】(1)∵OB=2,PB=1,且P在第一象限,∴P(2,1),由P在反比例函数y=上,故将x=2,y=1代入反比例函数解析式得:1=,即k=8,所以反比例函数解析式为:;(2)∵P(2,1)在直线y=x+b上,∴1=×2+b,解得b=3,∴直线y=x+3,令y=0,解得:x=﹣6;∴A(﹣6,0),∴OA=6,∴AB=8,∴S△APB=AB•PB=×8×1=16;(3)由图象及P的横坐标为2,可知:在第一象限内,一次函数的值小于反比例函数的值时x的范围为0<x<2.本题考查了反比例函数与一次函数的交点,涉及了待定系数法,一次函数与坐标轴的交点,利用了数形结合的思想,数形结合思想是数学中重要的思想方法,做第三问时注意灵活运用.18、(1)见解析;(2)EF=5;(3)16cm2【解析】
(1)根据正方形的性质可得OB=OC,∠OBE=∠OCF=45°,再利用同角的余角相等得到∠BOE=∠COF,从而推出△OBE≌△OCF,即可得OE=OF;(2)由(1)中的全等三角形可得BE=CF=3,由正方形的性质可知AB=BC,推出BF=AE=4,再根据勾股定理求出EF即可;(3)由(1)中的全等三角形可将四边形OEBF的面积转化为△OBC的面积,等于正方形面积的四分之一.【详解】(1)∵四边形ABCD为正方形∴OB=OC,∠OBE=∠OCF=45°,BD⊥AC∴∠BOF+∠COF=90°,∵OE⊥OF∴∠BOF+∠BOE=90°∴∠BOE=∠COF在△OBE和△OCF中,∵∠OBE=∠OCF,OB=OC,∠BOE=∠COF∴△OBE≌△OCF(ASA)∴OE=OF(2)∵△OBE≌△OCF∴BE=CF=3,∵四边形ABCD为正方形∴AB=BC即AE+BE=BF+CF∴BF=AE=4∴EF=(3)∵△OBE≌△OCF∴S四边形OEBF=S△OBE+S△OBF=S△OCF+S△OBF=S△BOC=S正方形ABCD==16cm2本题考查正方形的性质,全等三角形的判定与性质以及勾股定理,熟练掌握正方形的性质得出全等三角形的条件是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、±1【解析】
根据完全平方式的一般式,计算一次项系数即可.【详解】解:∵b为常数,且x2﹣bx+1是完全平方式,∴b=±1,故答案为±1.本题主要考查完全平方公式的系数关系,关键在于一次项系数的计算.20、【解析】
依据这些书摞在一起总厚度y(cm)与书的本数x成正比,即可得到函数解析式.【详解】解:每本书的厚度为,这些书摞在一起总厚度与书的本数的函数解析式为,故答案为:.本题主要考查了根据实际问题确定一次函数的解析式,找到所求量的等量关系是解决问题的关键.21、5【解析】
解:∵这组数据的中位数和平均数相等,且2、3、4、x从小到大排列,∴(3+4)=(2+3+4+x),解得:x=5;故答案为522、2.1×10﹣1【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:小数0.00002l用科学记数法表示为2.1×10-1.
故答案为2.1×10-1.本题考查了用科学记数法表示较小的数,一般形式为a×,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.23、x>2019【解析】
根据二次根式的定义进行解答.【详解】在实数范围内有意义,即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 营销活动执行合同
- 家政工合同范本家主
- 合同补充协议细节
- 工作失误保证书范本
- 基础商业物品采购合同
- 就读保证书范文的示例文本
- 农村地基买卖合同签订费用是多少详解
- 世界博物馆日活动
- 物业管理 补充合同模板
- 商品合同和服务合同模板
- 第三节气候对生产和生活的影响 (3)
- 幼儿园科学观察型案例
- 施工现场供排水管道及设施安全保护协议
- 2021-2022新教材浙科版生物学必修1课件:-细胞凋亡是编程性死亡
- 贵州省普通高中学校建设规范指导手册
- 跨文化交际课堂作业题及答案
- 皮带输送机技术要求
- 八年级上册道法:第八课第1课时国家好大家才会好(21张)ppt课件
- 经济法基础教案
- 医药行业销售人员薪酬激励方案研究
- 三相鼠笼异步电动机的工作特性实验报告
评论
0/150
提交评论