杭州学军中学2025届高一上数学期末调研试题含解析_第1页
杭州学军中学2025届高一上数学期末调研试题含解析_第2页
杭州学军中学2025届高一上数学期末调研试题含解析_第3页
杭州学军中学2025届高一上数学期末调研试题含解析_第4页
杭州学军中学2025届高一上数学期末调研试题含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

杭州学军中学2025届高一上数学期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设的两根是,则A. B.C. D.2.已知,且,则的最小值为()A.3 B.4C.5 D.63.若,则有()A.最小值为3 B.最大值为3C.最小值为 D.最大值为4.的值为A. B.C. D.5.在下列四组函数中,与表示同一函数的是()A.,B.,C.,D.,6.已知函数的图象与函数的图象关于直线对称,函数是奇函数,且当时,,则()A.-18 B.-12C.-8 D.-67.空间直角坐标系中,点关于平面的对称点为点,关于原点的对称点为点,则间的距离为A. B.C. D.8.已知集合A={x|-1≤x≤2},B={0,1,2,3},则A∩B=()A.{0,1} B.{-1,0,1}C.{0,1,2} D.{-1,0,1,2}9.对于实数x,“0<x<1”是“x<2”的()条件A.充要 B.既不充分也不必要C.必要不充分 D.充分不必要10.函数的图像大致为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知集合,则的元素个数为___________.12.在平面直角坐标系中,正三角形ABC的边BC所在直线的斜率是0,则AC,AB所在直线的斜率之和为________13.若,,则________.14.若函数是幂函数,则函数(其中,)的图象过定点的坐标为__________15.已知函数,若函数有三个零点,则实数的取值范围是________.16.在半径为5的圆中,的圆心角所对的扇形的面积为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数在一个周期内的图像经过点和点,且的图像有一条对称轴为.(1)求的解析式及最小正周期;(2)求的单调递增区间.18.已知,求值:(1);(2)2.19.(1)计算:()0.5+(-3)-1÷0.75-2-;(2)设0<a<1,解关于x的不等式.20.求解下列问题:(1)角的终边经过点,且,求的值(2)已知,,求的值21.已知函数的定义域是.(1)求实数a的取值范围;(2)解关于m的不等式.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】详解】解得或或即,所以故选D2、C【解析】依题意可得,则,再利用基本不等式计算可得;【详解】解:因为且,所以,所以当且仅当,即,时取等号;所以的最小值为故选:C【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方3、A【解析】利用基本不等式即得,【详解】∵,∴,∴,当且仅当即时取等号,∴有最小值为3.故选:A.4、B【解析】.故选B.5、B【解析】根据题意,先看函数的定义域是否相同,再观察两个函数的对应法则是否相同,即可得到结论.【详解】对于A中,函数的定义域为,而函数的定义域为,所以两个函数不是同一个函数;对于B中,函数的定义域和对应法则完全相同,所以是同一个函数;对于C中,函数的定义域为,而函数的定义域为,但是解析式不一样,所以两个函数不是同一个函数;对于D中,函数的定义域为,而函数的定义域为,所以不是同一个函数,故选:B.6、D【解析】首先根据题意得到,再根据的奇偶性求解即可.【详解】由题知:,所以当时,,又因为函数是奇函数,所以.故选:D7、C【解析】分析:求出点关于平面的对称点,关于原点的对称点,直接利用空间中两点间的距离公式,即可求解结果.详解:在空间直角坐标系中,点关于平面的对称点,关于原点的对称点,则间的距离为,故选C.点睛:本题主要考查了空间直角坐标系中点的表示,以及空间中两点间的距离的计算,着重考查了推理与计算能力,属于基础题.8、C【解析】利用交集定义直接求解【详解】∵集合A={x|-1≤x≤2},B={0,1,2,3},∴A∩B={0,1,2}故选:C9、D【解析】从充分性和必要性的定义,结合题意,即可容易判断.【详解】若,则一定有,故充分性满足;若,不一定有,例如,满足,但不满足,故必要性不满足;故“0<x<1”是“x<2”的充分不必要条件.故选:.10、A【解析】通过判断函数的奇偶性排除CD,通过取特殊点排除B,由此可得正确答案.【详解】∵∴函数是偶函数,其图像关于轴对称,∴排除CD选项;又时,,∴,排除B,故选.二、填空题:本大题共6小题,每小题5分,共30分。11、5【解析】直接求出集合A、B,再求出,即可得到答案.【详解】因为集合,集合,所以,所以的元素个数为5.故答案为:5.12、0【解析】由于正三角形的内角都为,且边BC所在直线的斜率是0,不妨设边AB所在直线的倾斜角为,则斜率为,则边AC所在直线的倾斜角为,斜率为,所以AC,AB所在直线的斜率之和为13、【解析】,然后可算出的值,然后可得答案.【详解】因为,,所以,所以,所以,,因为,所以,故答案为:14、(3,0)【解析】若函数是幂函数,则,则函数(其中,),令,计算得出:,,其图象过定点的坐标为15、【解析】作出函数图象,进而通过数形结合求得答案.【详解】问题可以转化为函数的图象与直线有3个交点,如图所示:所以时满足题意.故答案为:.16、【解析】先根据弧度的定义求得扇形的弧长,即可由扇形面积公式求得扇形的面积.【详解】设扇形的弧长为根据弧度定义可知则由扇形面积公式代入可得故答案为:【点睛】本题考查了弧度的定义,扇形面积的求法,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】(1)由函数图象经过点且f(x)的图象有一条对称轴为直线,可得最大值A,且能得周期并求得ω,由五点法作图求出的值,可得函数的解析式(2)利用正弦函数的单调性求得f(x)的单调递增区间【详解】(1)函数f(x)=Asin(ωx+)(A>0,ω>0,)在一个周期内的图象经过点,,且f(x)的图象有一条对称轴为直线,故最大值A=4,且,∴,∴ω=3所以.因为的图象经过点,所以,所以,.因为,所以,所以.(2)因为,所以,,所以,,即的单调递增区间为.【点睛】本题主要考查由函数y=Asin(ωx+)的性质求解析式,通常由函数的最大值求出A,由周期求出ω,由五点法作图求出的值,考查了正弦型函数的单调性问题,属于基础题18、(1);(2).【解析】(1)根据已知可求出,将所求的式子化弦为切,即可求解;(2)引进分式,利用“1”的变化,将所求式子化为的齐次分式,化弦为切,即可求解.【详解】.(1);(2)2.【点睛】关键点睛:解决问题二的关键在于利用“1”的变化,将所求式子化为的齐次分式,化弦为切.19、(1)0;(2){x|x>1}【解析】(1)根据指数幂的运算性质,化简求值;(2)利用指数函数的单调性,即可求解不等式.【详解】(1)原式(2)因为0<a<1,所以y=ax在(-∞,+∞)上为减函数,因为,所以2x2-3x+2<2x2+2x-3,解得x>1.故x的解集为{x|x>1}.20、(1)或(2)【解析】(1)结合三角函数的定义求得,由此求得.(2)通过平方的方法求得,由此求得.【小问1详解】依题意或.所以或,所以或.【小问2详解】由于,所以,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论