




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省赣州市会昌中学、宁师中学2025届高二上数学期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线的焦点为,在抛物线上有一点,满足,则的中点到轴的距离为()A. B.C. D.2.若在1和16中间插入3个数,使这5个数成等比数列,则公比为()A. B.2C. D.43.已知、分别为双曲线的左、右焦点,且,点P为双曲线右支一点,为的内心,若成立,给出下列结论:①点的横坐标为定值a;②离心率;③;④当轴时,上述结论正确的是()A.①② B.②③C.①②③ D.②③④4.用1,2,3,4这4个数字可写出()个没有重复数字的三位数A.24 B.12C.81 D.645.若抛物线上的点到其焦点的距离是到轴距离的倍,则等于A. B.1C. D.26.原点到直线的距离的最大值为()A. B.C. D.7.若双曲线(,)的焦距为,且渐近线经过点,则此双曲线的方程为()A. B.C. D.8.计算复数:()A. B.C. D.9.设双曲线与椭圆:有公共焦点,.若双曲线经过点,设为双曲线与椭圆的一个交点,则的余弦值为()A. B.C. D.10.已知函数,则()A.函数在上单调递增B.函数上有两个零点C.函数有极大值16D.函数有最小值11.已知平面的一个法向量为,且,则点A到平面的距离为()A. B.C. D.112.设抛物线的焦点为,准线与轴的交点为,是上一点,若,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.教育部门对某校学生的阅读素养进行调研,在该校随机抽取了100名学生进行百分制检测,现将所得的成绩按照,分成6组,并根据所得数据作出了频率分布直方图(如图所示),则成绩在这组的学生人数是________.14.双曲线的焦点在圆上,圆O与双曲线C的渐近线在第一、四象限分别交于P,Q两点满足(其中O是坐标原点),则的面积是_________15.椭圆与双曲线有公共焦点,设椭圆与双曲线在第一象限内交于点,椭圆与双曲线的离心率分别为为坐标原点,,则的取值范围是___________.16.已知关于的不等式恒成立,则实数的取值范围是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线过点(1)若直线与直线垂直,求直线的方程;(2)若直线在两坐标轴的截距相等,求直线的方程18.(12分)已知等比数列的首项,公比,在中每相邻两项之间都插入3个正数,使它们和原数列的数一起构成一个新的等比数列.(1)求数列的通项公式;(2)记数列前n项的乘积为,试问:是否有最大值?如果是,请求出此时n以及最大值;若不是,请说明理由.19.(12分)如图,在梯形中,,四边形为矩形,且平面,.(1)求证:;(2)点在线段(不含端点)上运动,设直线与平面所成角为,求的取值范围.20.(12分)如图,在棱长为2的正方体中,,分别为线段,的中点.(1)求点到平面的距离;(2)求平面与平面夹角的余弦值.21.(12分)在正方体中,E,F分别是,的中点(1)求证:∥平面;(2)求平面与平面EDC所成的二面角的正弦值22.(10分)如图,一个湖的边界是圆心为的圆,湖的一侧有一条直线型公路,湖上有桥(是圆的直径).规划在公路上选两个点、,并修建两段直线型道路、.规划要求,线段、上的所有点到点的距离均不小于圆的半径.已知点到直线的距离分别为和(为垂足),测得,,(单位:百米).(1)若道路与桥垂直,求道路的长;(2)在规划要求下,点能否选在处?并说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】设点,利用抛物线的定义求出的值,可求得点的横坐标,即可得解.【详解】设点,易知抛物线的焦点为,由抛物线的定义可得,得,所以,点的横坐标为,故点到轴的距离为.故选:A.2、A【解析】根据等比数列的通项得:,从而可求出.【详解】解:成等比数列,∴根据等比数列的通项得:,,故选:A.3、C【解析】利用双曲线的定义、几何性质以及题意对选项逐个分析判断即可【详解】对于①,设内切圆与的切点分别为,则由切线长定理可得,因为,,所以,所以点的坐标为,所以点的横坐标为定值a,所以①正确,对于②,因为,所以,化简得,即,解得,因为,所以,所以②正确,对于③,设的内切圆半径为,由双曲线的定义可得,,因为,,所以,所以,所以③正确,对于④,当轴时,可得,此时,所以,所以④错误,故选:C4、A【解析】由题意,从4个数中选出3个数出来全排列即可.【详解】由题意,从4个数中选出3个数出来全排列,共可写出个三位数.故选:A5、D【解析】根据抛物线的定义及题意可知3x0=x0+,得出x0求得p,即可得答案【详解】由题意,3x0=x0+,∴x0=∴∵p>0,∴p=2.故选D【点睛】本题主要考查了抛物线的定义和性质.考查了考生对抛物线定义的掌握和灵活应用,属于基础题6、C【解析】求出直线过的定点,当时,原点到直线距离最大,则可求出原点到直线距离的最大值;【详解】因为可化为,所以直线过直线与直线交点,联立可得所以直线过定点,当时,原点到直线距离最大,最大距离即为,此时最大值为,故选:C.7、B【解析】根据题意得到,,解得答案.【详解】双曲线(,)的焦距为,故,.且渐近线经过点,故,故,双曲线方程为:.故选:.【点睛】本题考查了双曲线方程,意在考查学生对于双曲线基本知识的掌握情况.8、D【解析】直接利用复数代数形式的乘除运算化简可得结论.【详解】故选:D.9、A【解析】求出双曲线方程,根据椭圆和双曲线的第一定义求出的长度,从而根据余弦定理求出的余弦值【详解】由题得,双曲线中,所以,双曲线方程为:,假设在第一象限,根据椭圆和双曲线的定义可得:,解得:,,所以根据余弦定理,故选:A10、C【解析】对求导,研究的单调性以及极值,再结合选项即可得到答案.【详解】,由,得或,由,得,所以在上递增,在上递减,在上递增,所以极大值为,极小值为,所以有3个零点,且无最小值.故选:C11、B【解析】直接由点面距离的向量公式就可求出【详解】∵,∴,又平面的一个法向量为,∴点A到平面的距离为故选:B12、D【解析】求出抛物线的准线方程,可得出点的坐标,利用抛物线的定义可求得点的坐标,再利用两点间的距离公式可求得结果.【详解】易知抛物线焦点为,准线方程为,可得准线与轴的交点,设点,由抛物线的性质,,可得,所以,,解得,即点,所以.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、20【解析】根据频率分布直方图求出成绩在这组的频率,从而可得出答案.【详解】解:由频率分布直方图可知,成绩在这组的频率为,所以成绩在这组的学生人数为(人).故答案为:20.14、【解析】根据双曲线的焦点在圆上可求出的值,设线段与轴的交点坐标为,进而根据求出的坐标,代入圆中,求出的值,即可求出结果.【详解】因为双曲线的焦点在圆上,所以,设线段与轴的交点坐标为,结合双曲线与圆的对称性可知为线段的中点,又因为,即,且,则,又因为直线的方程为,所以,又因为在圆上,所以,又因为,则,所以,从而,故,故答案为:.15、【解析】根据椭圆和双曲线得定义求得,再根据,可得,从而有,求出的范围,根据,结合基本不等式即可得出答案.【详解】解:设,则有,所以,即,又因为,所以,所以,即,则,由,得,所以,所以,则,由,得,因为,当且仅当,即时,取等号,因为,所以,所以,即,所以的取值范围是.故答案为:.16、【解析】参变分离,可得,设,求导分析单调性,可得,即得解【详解】因为,所以不等式可化为,设,则,设,由于故在上单调递增,且,则当时,,单调递减;当时,,单调递增,所以,则,即.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)由两条直线垂直可设直线的方程为,将点的坐标代入计算即可;(2)当直线过原点时,根据直线的点斜式方程即可得出结果;当直线不过原点时可设直线的方程为,将点的坐标代入计算即可.【小问1详解】解:因为直线与直线垂直所以,设直线的方程为,因为直线过点,所以,解得,所以直线的方程为【小问2详解】解:当直线过原点时,斜率为,由点斜式求得直线的方程是,即当直线不过原点时,设直线的方程为,把点代入方程得,所以直线的方程是综上,所求直线的方程为或18、(1)(2)当或时,有最大值.【解析】(1)利用等比数列通项公式求解即可;(2)求出数列的前n项的乘积为,利用二次函数的性质求最值即可.【小问1详解】由已知得,数列首项,,设数列的公比为,即∴即,【小问2详解】,即当或5时,有最大值.19、(1)证明见解析(2)【解析】(1)过作,垂足为,利用正余弦定理可证,再利用线线垂足证明线面垂直,进而可得证;(2)以为坐标原点,分别以,,所在直线为,,轴建立空间直角坐标系,利用坐标法求线面夹角的正弦值.【小问1详解】证明:由已知可得四边形是等腰梯形,过作,垂足为,则,在中,,则,可得,在中,由余弦定理可得,,则,,又平面,平面,,,,平面,平面,又为矩形,,则平面,而平面,;【小问2详解】平面,且,以为坐标原点,分别以,,所在直线为,,轴建立空间直角坐标系,则,,,,,设,则,又,设平面的法向量为,由,取,得,又,,,,则.20、(1);(2).【解析】(1)以为原点,为轴,为轴,为轴,建立空间直角坐标系.可根据题意写出各个点的坐标,进而求出平面的法向量和的坐标,点到平面的距离.计算即可求出答案.(2)由(1)知平面的法向量,在把平面的法向量表示出来,平面与平面夹角的余弦值为,计算即可求出答案.【小问1详解】以为原点,为轴,为轴,为轴,建立如下图所示的空间直角坐标系.由于正方体的棱长为2和,分别为线段,的中点知,.设平面的法向量为..则..故点到平面的距离.【小问2详解】平面的法向量,平面与平面夹角的余弦值.21、(1)见解析;(2).【解析】(1)连接,,连接,证明CE∥即可;(2)建立空间直角坐标系,求出平面与平面EDC的法向量,利用向量法求二面角的正弦值.【小问1详解】如图,连接,,连接,∵BC∥且BC=,∴四边形是平行四边形,∴∥且,∵E是中点,G是中点,∴∥CG且,∴四边形是平行四边形,∴∥CE,∵平面,CE平面,∴CE∥平面;【小问2详解】如图建立空间直角坐标系,设正方体的棱长为2,则,则,设平面的法向量为,则,取;设平面EDC的法向量为,则,取,则;设平面与平面EDC所成的二面角的平面角为α,则,∴22、(1)15(百米)(2)点选在处不满足规划要求,理由见解析【解析】(1)建立适当的坐标系,得圆及直线的方程,进而得解.(2)不妨点选在处,求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 业务流程跟踪与监控表
- 铝灰渣资源化利用改建项目实施方案(范文模板)
- 2025年四川省达州市中考英语真题含答案
- 房屋预售购销合同
- 中试平台建设的资金筹措与资源配置策略
- 生物制药中试平台建设的背景与发展趋势
- 建筑设计原理与设计题集
- 《宏观经济与微观经济:高二经济学基础教案》
- 资源整合与优化在中试能力建设中的应用
- 品牌加盟合作合同协议书详细内容约定
- 2025年河北省万唯中考定心卷地理(一)
- 创造性思维与创新方法(大连民族大学)知到网课答案
- 2024北京西城区四年级(下)期末数学试题及答案
- 中国慢性阻塞性肺疾病基层诊疗指南(2024年)解读
- 包工不包料合同
- DB52∕T 046-2018 贵州省建筑岩土工程技术规范
- PCO行业卫生杀虫剂[通用]
- 铝合金门窗钢副框安装过程图解1课件
- (演唱)大母鸡花公鸡
- XY-44C型立轴式岩芯钻机使用说明书
- 药物溶出度数据处理软件
评论
0/150
提交评论