甘肃省庆阳市第二中学2025届高一上数学期末考试试题含解析_第1页
甘肃省庆阳市第二中学2025届高一上数学期末考试试题含解析_第2页
甘肃省庆阳市第二中学2025届高一上数学期末考试试题含解析_第3页
甘肃省庆阳市第二中学2025届高一上数学期末考试试题含解析_第4页
甘肃省庆阳市第二中学2025届高一上数学期末考试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省庆阳市第二中学2025届高一上数学期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则()A.“”是“”的充分不必要条件 B.“”是“”的充要条件C.“”是“”的必要不充分条件 D.“”是“”的既不充分也不必要条件2.一几何体的直观图如右图,下列给出的四个俯视图中正确的是()A. B.C. D.3.是定义在上的函数,,且在上递减,下列不等式一定成立的是A. B.C. D.4.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半这条直线被后人称之为三角形的欧拉线若的顶点,,且的欧拉线的方程为,则顶点C的坐标为A. B.C. D.5.用二分法求方程的近似解时,可以取的一个区间是A. B.C. D.6.基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)()A.1.2天 B.1.8天C.2.5天 D.3.5天7.已知全集,,,则等于()A. B.C. D.8.已知函数的图象关于直线对称,且,则的最小值为()A. B.C. D.9.函数y=xcosx+sinx在区间[–π,π]的图象大致为()A. B.C. D.10.若,求()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.的定义域为________________12.方程的解在内,则的取值范围是___________.13.已知,且,则=_______________.14.已知,,则______.15.已知函数,且函数恰有两个不同零点,则实数的取值范围是___________.16.已知集合,则___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知全集,若集合,.(1)若,求;(2)若,求实数的取值范围.18.已知集合A={x|x=m2-n2,m∈Z,n∈Z}.求证:(1)3∈A;(2)偶数4k-2(k∈Z)不属于A19.已知函数,当点在的图像上移动时,点在函数的图像上移动,(1)若点的坐标为,点也在图像上,求的值(2)求函数的解析式(3)当,令,求在上的最值20.已知函数(1)求证:用单调性定义证明函数是上的严格减函数;(2)已知“函数的图像关于点对称”的充要条件是“对于定义域内任何恒成立”.试用此结论判断函数的图像是否存在对称中心,若存在,求出该对称中心的坐标;若不存在,说明理由;(3)若对任意,都存在及实数,使得,求实数的最大值.21.已知函数(1)判断函数在区间上的单调性,并用定义证明其结论;(2)求函数在区间上的最大值与最小值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据推出关系依次判断各个选项即可得到结果.【详解】对于A,,,则“”是“”的必要不充分条件,A错误;对于B,,,则“”是“”的充分不必要条件,B错误;对于C,,,则“”是“”的必要不充分条件,C正确;对于D,,,则“”是“”的充分不必要条件,D错误.故选:C.2、B【解析】通过几何体结合三视图的画图方法,判断选项即可【详解】解:几何体的俯视图,轮廓是矩形,几何体的上部的棱都是可见线段,所以C、D不正确;几何体的上部的棱与正视图方向垂直,所以A不正确,故选B【点睛】本题考查三视图的画法,几何体的结构特征是解题的关键3、B【解析】对于A,由为偶函数可得,又,由及在上为减函数得,故A错;对于B,因同理可得,故B对;对于C,因无法比较大小,故C错;对于D,取,则;取,则,故与大小关系不确定,故D错,综上,选B点睛:对于奇函数或偶函数,如果我们知道其一侧的单调性,那么我们可以知道另一侧的单调性,解题时注意转化4、A【解析】设出点C的坐标,由重心坐标公式求得重心,代入欧拉线得一方程,求出AB的垂直平分线,和欧拉线方程联立求得三角形的外心,由外心到两个顶点的距离相等得另一方程,两方程联立求得点C的坐标【详解】设C(m,n),由重心坐标公式得,三角形ABC的重心为(,),代入欧拉线方程得:2=0,整理得:m﹣n+4=0①AB的中点为(1,2),直线AB的斜率k2,AB的中垂线方程为y﹣2(x﹣1),即x﹣2y+3=0联立,解得∴△ABC的外心为(﹣1,1)则(m+1)2+(n﹣1)2=32+12=10,整理得:m2+n2+2m﹣2n=8②联立①②得:m=﹣4,n=0或m=0,n=4当m=0,n=4时B,C重合,舍去∴顶点C的坐标是(﹣4,0)故选A【点睛】本题考查直线方程的求法,训练了直线方程的点斜式,考查了方程组的解法5、A【解析】分析:根据零点存在定理进行判断详解:令,因为,,所以可以取的一个区间是,选A.点睛:零点存在定理的主要内容为区间端点函数值异号,是判断零点存在的主要依据.6、B【解析】根据题意可得,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为天,根据,解得即可得结果.【详解】因为,,,所以,所以,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为天,则,所以,所以,所以天.故选:B.【点睛】本题考查了指数型函数模型的应用,考查了指数式化对数式,属于基础题.7、D【解析】利用补集和并集的定义即可得解.【详解】,,,,,.故选:D.【点睛】本题主要考查集合的基本运算,熟练掌握补集和并集的定义是解决本题的关键,属于基础题.8、D【解析】由辅助角公式可得,由函数关于直线对称,可得,可取.从而可得,由此结合,可得一个最大值一个最小值,从而可得结果.【详解】,,函数关于直线对称,,即,,故可取故,,即可得:,故可令,,,,即,,其中,,,故选D【点睛】本题主要考查辅助角公式的应用、三角函数的最值、三角函数的对称性,转化与划归思想的应用,属于难题.由函数可求得函数的周期为;由可得对称轴方程;由可得对称中心横坐标.9、A【解析】首先确定函数的奇偶性,然后结合函数在处的函数值排除错误选项即可确定函数的图象.【详解】因为,则,即题中所给的函数为奇函数,函数图象关于坐标原点对称,据此可知选项CD错误;且时,,据此可知选项B错误.故选:A.【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项10、A【解析】根据,求得,再利用指数幂及对数的运算即可得出答案.【详解】解:因为,所以,所以.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由分子根式内部的代数式大于等于0,分母不等于0列式求解x的取值集合即可得到答案.或x>5.∴的定义域为考点:函数的定义域及其求法.12、【解析】先令,按照单调性求出函数的值域,写出的取值范围即可.【详解】令,显然该函数增函数,,值域为,故.故答案为:.13、【解析】由同角三角函数关系求出,最后利用求解即可.【详解】由,且得则,则.故答案为:.14、【解析】把已知的两个等式两边平方作和即可求得cos(α﹣β)的值【详解】解:由已知sinα+sinβ=1①,cosα+cosβ=0②,①2+②2得:2+2cos(α﹣β)=1,∴cos(α﹣β),故答案为点睛】本题考查三角函数的化简求值,考查同角三角函数基本关系式及两角差的余弦,是基础题15、【解析】作出函数的图象,把函数的零点转化为直线与函数图象交点问题解决.【详解】由得,即函数零点是直线与函数图象交点横坐标,当时,是增函数,函数值从1递增到2(1不能取),当时,是增函数,函数值为一切实数,在坐标平面内作出函数的图象,如图,观察图象知,当时,直线与函数图象有2个交点,即函数有2个零点,所以实数的取值范围是:.故答案为:16、【解析】根据集合的交集的定义进行求解即可【详解】当时,不等式不成立,当时,不等式成立,当时,不等式不成立,当时,不等式不成立,所以,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用集合的交集及补集的定义直接求解即可;(2)由可得,利用集合的包含关系求解即可.【详解】(1)当时,,所以,因为,所以;(2)由得,,所以【点睛】本题主要考查了集合的运算及包含关系求参,属于基础题.18、(1)见解析;(2)见解析.【解析】(1)由3=22-12即可证得;(2)设4k-2∈A,则存在m,n∈Z,使4k-2=m2-n2=(m+n)(m-n)成立,分当m,n同奇或同偶时和当m,n一奇,一偶时两种情况进行否定即可.试题解析:(1)∵3=22-12,3∈A;(2)设4k-2∈A,则存在m,n∈Z,使4k-2=m2-n2=(m+n)(m-n)成立,1、当m,n同奇或同偶时,m-n,m+n均为偶数,∴(m-n)(m+n)为4的倍数,与4k-2不是4的倍数矛盾2、当m,n一奇,一偶时,m-n,m+n均为奇数,∴(m-n)(m+n)为奇数,与4k-2是偶数矛盾综上4k-2不属于A19、(1);(2);(3)见解析【解析】(1)首先可通过点坐标得出点的坐标,然后通过点也在图像上即可得出的值;(2)首先可以设出点的坐标为,然后得到与、与的关系,最后通过在的图像上以及与、与的关系即可得到函数的解析式;(3)首先可通过三个函数的解析式得出函数的解析式,再通过函数的单调性得出函数的单调性,最后根据函数的单调性即可计算出函数的最值【详解】(1)当点的坐标为,点的坐标为,因为点也在图像上,所以,即;(2)设函数上,则有,即,而在的图像上,所以,代入得;(3)因为、、,所以,,令函数,因为当时,函数单调递减,所以当时,函数单调递增,,,综上所述,最小值为,最大值为【点睛】本题考查了对数函数的相关性质,考查了对数的运算、对数函数的单调性以及最值,考查函数方程思想以及化归与转化思想,体现了基础性与综合性,提高了学生的逻辑推理能力20、(1)见解析;(2)存在,为;(3)2.【解析】(1)先设,然后利用作差法比较与的大小即可判断;假设函数的图像存在对称中心,(2)结合函数的对称性及恒成立问题可建立关于,的方程,进而可求,;(3)由已知代入整理可得,的关系,然后结合恒成立可求的范围,进而可求【小问1详解】设,则,∴,∴函数是上的严格减函数;【小问2详解】假设函数的图像存在对称中心,则恒成立,整理得恒成立,∴,解得,,故函数的对称中心为;【小问3详解】∵对任意,,都存在,及实数,使得,∴,即,∴,∴,∵,,∴,,∵,,∴,,,∴,即,∴,∴,即的最大值为221、(1)证明见解析;(2)最大值为;小值为【解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论