版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省扬州市武坚中学2025届数学高一上期末调研模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列说法正确的有()①两个面平行且相似,其余各面都是梯形的多面体是棱台;②经过球面上不同的两点只能作一个大圆;③各侧面都是正方形的四棱柱一定是正方体;④圆锥的轴截面是等腰三角形.A.1个 B.2个C.3个 D.4个2.设集合,则是A. B.C. D.有限集3.已知函数,则等于A.2 B.4C.1 D.4.=()A. B.C. D.5.已知,,,则的大小关系为A. B.C. D.6.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=13A.-13C.-227.若直线x+(1+m)y-2=0与直线mx+2y+4=0平行,则m的值是A.1 B.-2C.1或-2 D.8.可以化简成()A. B.C. D.9.直线与圆相交于两点,若,则的取值范围是A. B.C. D.10.不论为何实数,直线恒过定点()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知幂函数的图象关于轴对称,且在上单调递减,则满足的的取值范围为________.12.已知一个圆锥的母线长为1,其高与母线的夹角为45°,则该圆锥的体积为____________.13.已知一个扇形的弧长为,其圆心角为,则这扇形的面积为______14.某时钟的秒针端点到中心点的距离为6cm,秒针均匀地绕点旋转,当时间时,点与钟面上标12的点重合,将,两点的距离表示成的函数,则_______,其中15.某地为践行绿水青山就是金山银山的理念,大力开展植树造林.假设一片森林原来的面积为亩,计划每年种植一些树苗,且森林面积的年增长率相同,当面积是原来的倍时,所用时间是年(1)求森林面积的年增长率;(2)到今年为止,森林面积为原来的倍,则该地已经植树造林多少年?(3)为使森林面积至少达到亩,至少需要植树造林多少年(精确到整数)?(参考数据:,)16.给出如下五个结论:①存在使②函数是偶函数③最小正周期为④若是第一象限的角,且,则⑤函数的图象关于点对称其中正确结论序号为______________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知的图像关于坐标原点对称.(1)求的值,并求出函数的零点;(2)若存在,使不等式成立,求实数取值范围.18.某公司为了解宿州市用户对其产品的满意度,从宿州市,两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到地区用户满意度评分的频率分布直方图(如图)和地区的用户满意度评分的频数分布表(如表1)满意度评分频数2814106表1满意度评分低于70分满意度等级不满意满意非常满意表2(1)求图中的值,并分别求出,两地区样本用户满意度评分低于70分的频率(2)根据用户满意度评分,将用户的满意度分为三个等级(如表2),将频率看作概率,从,两地用户中各随机抽查1名用户进行调查,求至少有一名用户评分满意度等级为“满意”或“非常满意”的概率.19.已知:,.设函数求:(1)的最小正周期;(2)的对称中心,(3)若,且,求20.已知,___________,.从①,②,③中任选一个条件,补充在上面问题中,并完成题目.(1)求值(2)求.21.如图,四棱锥的底面为正方形,底面,分别是的中点.(1)求证:平面;(2)求证:平面平面.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据棱台、球、正方体、圆锥的几何性质,分析判断,即可得答案.【详解】①中若两个底面平行且相似,其余各面都是梯形,并不能保证侧棱延长线会交于一点,所以①不正确;②中若球面上不同的两点恰为球的某条直径的两个端点,则过此两点的大圆有无数个,所以②不正确;③中底面不一定是正方形,所以③不正确;④中圆锥的母线长相等,所以轴截面是等腰三角形,所以④是正确的.故选:A2、C【解析】根据二次函数和指数函数的图象和性质,分别求出两集合中函数的值域,求出两集合的交集即可【详解】由集合S中的函数y=3x>0,得到集合S={y|y>0};由集合T中的函数y=x2﹣1≥﹣1,得到集合T={y|y≥﹣1},则S∩T=S故选C【点睛】本题属于求函数值域,考查了交集的求法,属于基础题3、A【解析】由题设有,所以,选A4、B【解析】利用诱导公式和特殊角的三角函数值直接计算作答.【详解】.故选:B5、A【解析】利用利用等中间值区分各个数值的大小【详解】;;故故选A【点睛】利用指数函数、对数函数的单调性时要根据底数与的大小区别对待6、B【解析】根据终边关于y轴对称可得关系α+β=π+2kπ,k∈Z,再利用诱导公式,即可得答案;【详解】在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,∴α+β=π+2kπ,k∈Z,∵sinα=∴sin故选:B.【点睛】本题考查角的概念和诱导公式的应用,考查逻辑推理能力、运算求解能力.7、A【解析】分类讨论直线的斜率情况,然后根据两直线平行的充要条件求解即可得到所求【详解】①当时,两直线分别为和,此时两直线相交,不合题意②当时,两直线的斜率都存在,由直线平行可得,解得综上可得故选A【点睛】本题考查两直线平行的等价条件,解题的关键是将问题转化为对直线斜率存在性的讨论.也可利用以下结论求解:若,则且或且8、B【解析】根据指数幂和根式的运算性质转化即可【详解】解:,故选:B9、C【解析】圆,即.直线与圆相交于两点,若,设圆心到直线距离.则,解得.即,解得故选C.点睛:直线与圆的位置关系常用处理方法:(1)直线与圆相切处理时要利用圆心与切点连线垂直,构建直角三角形,进而利用勾股定理可以建立等量关系;(2)直线与圆相交,利用垂径定理也可以构建直角三角形;(3)直线与圆相离时,当过圆心作直线垂线时长度最小10、C【解析】将直线方程变形为,即可求得过定点坐标.【详解】根据题意,将直线方程变形为因为位任意实数,则,解得所以直线过的定点坐标为故选:C【点睛】本题考查了直线过定点的求法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据幂函数的单调性和奇偶性得到,代入不等式得到,根据函数的单调性解得答案.【详解】幂函数在上单调递减,故,解得.,故,,.当时,不关于轴对称,舍去;当时,关于轴对称,满足;当时,不关于轴对称,舍去;故,,函数在和上单调递减,故或或,解得或.故答案为:12、##【解析】由题可得,然后利用圆锥的体积公式即得.【详解】设圆锥的底面半径为r,高为h,由圆锥的母线长为1,其高与母线的夹角为45°,∴,∴该圆锥的体积为.故答案为:.13、2【解析】根据弧长公式求出对应的半径,然后根据扇形的面积公式求面积即可.【详解】设扇形的半径为,圆心角为,弧长,可得=4,这条弧所在的扇形面积为,故答案为.【点睛】本题主要考查扇形的面积公式和弧长公式,意在考查对基础知识与基本公式掌握的熟练程度,属于中档题.14、【解析】设函数解析式为,由题意将、代入求出参数值,即可得解析式.【详解】设,由题意知:,当时,,则,,令得;当时,,则,,令得,所以.故答案为:.15、(1);(2)5年;(3)17年.【解析】(1)设森林面积的年增长率为,则,解出,即可求解;(2)设该地已经植树造林年,则,解出的值,即可求解;(3)设为使森林面积至少达到亩,至少需要植树造林年,则,再结合对数函数的公式,即可求解.【小问1详解】解:设森林面积的年增长率为,则,解得【小问2详解】解:设该地已经植树造林年,则,,解得,故该地已经植树造林5年【小问3详解】解:设为使森林面积至少达到亩,至少需要植树造林年,则,,,,即取17,故为使森林面积至少达到亩,至少需要植树造林17年16、②③【解析】利用正弦函数的图像与性质,逐一判断即可.【详解】对于①,,,故错误;对于②,,显然为偶函数,故正确;对于③,∵y=sin(2x)的最小正周期为π,∴y=|sin(2x)|最小正周期为.故正确;对于④,令α,β,满足,但,故错误;对于⑤,令则故对称中心为,故错误.故答案为:②③【点睛】本题主要考查三角函数图象与性质,考查辅助角公式和诱导公式、正弦函数的图象的对称性和单调性,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)由题设知是上的奇函数.所以,得(检验符合),又方程可以化简为,从而.(2)不等式有解等价于在上有解,所以考虑在上的最小值,利用换元法可求该最小值为,故.(1)由题意知是上的奇函数.所以,得.,,由,可得,所以,,即的零点为.(2),由题设知在内能成立,即不等式在上能成立.即在内能成立,令,则在上能成立,只需,令,对称轴,则在上单调递增.∴,所以..点睛:如果上的奇函数中含有一个参数,那么我们可以利用来求参数的大小.又不等式的有解问题可以转化为函数的最值问题来处理.18、(1);地区样本用户满意度评分低于70分的频率为;地区样本用户满意度评分低于70分的频率为(2)【解析】(1)由频率和等于1计算可求得,进而计算低于70分的频率即可得出结果.(2)由(1)可知,记从地区随机抽取一名用户评分低于70分的事件记为,则;可以记从地区随机抽取一名用户评分低于的事件记为,则,由对立事件的概率公式计算即可得出结果.【小问1详解】根据地区的频率直方图可得,解得所以地区样本用户满意度评分低于70分的频率为地区样本用户满意度评分低于70分的频率为【小问2详解】根据用样本频率可以估计总体的频率,可以记从地区随机抽取一名用户评分低于70分的事件记为,则;可以记从地区随机抽取一名用户评分低于的事件记为,则易知事件和事件相互独立,则事件和事件相互独立,记事件“至少有一名用户评分满意度等级为“满意”或“非常满意””为事件所以故至少有一名用户评分满意度等级为“满意”或“非常满意”的概率为19、(1);(2)(k∈Z);(3)或.【解析】(1)解:由题意,,(1)函数的最小正周期为;(2),得,所以对称中心;(3)由题意,,得或,所以或点睛:本题考查三角函数的恒等关系的综合应用.本题中,由向量的数量积,同时利用三角函数化简的基本方法,得到,利用三角函数的性质,求出周期、对称中心等2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年技术研发与专利共享合同范本
- 基于二零二四年度物联网技术的智能家居产品采购合同2篇
- 二手房屋贷款买卖合同2024年度范例2篇
- 2024年度物业管理合同(含管理服务内容)3篇
- 2024年度广告拍摄合同3篇
- 二零二四年度大数据分析与服务合同:数据公司为客户提供数据分析和应用服务2篇
- 2024年度环保设备设计与制造合同.2篇
- 二零二四年度研发合同:生物制药研究与开发2篇
- 2024年度成都市智能城市建设合作合同
- 2024年度大数据中心设计与建设合同2篇
- 五位一体总布局课件
- 无人机机场技术方案
- 班主任基本功大赛:模拟情景题及参考答案汇编(初中组)
- 产品平台与CBB技术管理
- 改变世界的机器 精益生产之道
- 病例分析一例热射病患者病例汇报
- 沟下作业安全知识培训
- 备战2024年中考语文复习考点帮(全国通用)考点十三 小说阅读(好题冲关·真题演练)(解析版)
- 中国中医药出版社十四五方剂学课后思考题答案
- 22G101三维立体彩色图集
- 高中物理实验报告及高中物理实验报告大全
评论
0/150
提交评论