2025届广东省汕头市达濠华桥中学、东厦中学数学高一上期末学业质量监测模拟试题含解析_第1页
2025届广东省汕头市达濠华桥中学、东厦中学数学高一上期末学业质量监测模拟试题含解析_第2页
2025届广东省汕头市达濠华桥中学、东厦中学数学高一上期末学业质量监测模拟试题含解析_第3页
2025届广东省汕头市达濠华桥中学、东厦中学数学高一上期末学业质量监测模拟试题含解析_第4页
2025届广东省汕头市达濠华桥中学、东厦中学数学高一上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届广东省汕头市达濠华桥中学、东厦中学数学高一上期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合,集合,则()A.{-1,0,1} B.{1,2}C.{-1,0,1,2} D.{0,1,2}2.若函数在定义域上的值域为,则()A. B.C. D.3.函数的部分图象大致是图中的()A.. B.C. D.4.下列说法正确的有()①两个面平行且相似,其余各面都是梯形的多面体是棱台;②经过球面上不同的两点只能作一个大圆;③各侧面都是正方形的四棱柱一定是正方体;④圆锥的轴截面是等腰三角形.A.1个 B.2个C.3个 D.4个5.已知,函数在上递减,则的取值范围为()A. B.C. D.6.设,是两条不同的直线,是一个平面,则下列命题正确的是A.若,,则 B.若,,则C.若,,则 D.若,,则7.《九章算术》中“方田”章给出了计算弧田面积时所用的经验公式,即弧田面积=×(弦×矢+矢).弧田(如图1)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为,半径为2米的弧田(如图2),则这个弧田面积大约是()平方米.(,结果保留整数)A.2 B.3C.4 D.58.函数的零点所在的区域为()A. B.C. D.9.如图,在平面直角坐标系xOy中,角的顶点与原点O重合,它的始边与x轴的非负半轴重合,终边OP交单位圆O于点P,则点P的坐标为A.

,B.

C.

,D.

10.若,则是第()象限角A.一 B.二C.三 D.四二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数在区间是单调递增函数,则实数的取值范围是______12.当时,函数取得最大值,则___________.13.已知,,,则________14.圆关于直线的对称圆的标准方程为___________.15.各条棱长均相等的四面体相邻两个面所成角的余弦值为___________.16.亲爱的考生,我们数学考试完整的时间是2小时,则从考试开始到结束,钟表的分针转过的弧度数为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.由历年市场行情知,从11月1日起的30天内,某商品每件的销售价格(元)与时间(天)的函数关系是,日销售量(件)与时间(天)的函数关系是.(1)设该商品的日销售额为y元,请写出y与t的函数关系式;(商品的日销售额=该商品每件的销售价格×日销售量)(2)求该商品的日销售额的最大值,并指出哪一天的销售额最大?18.已知向量,,且.(1)的值;(2)若,,且,求的值19.如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.(1)求圆C的标准方程;(2)求圆C在点B处的切线方程.20.牛奶保鲜时间因储藏温度的不同而不同,假定保鲜时间与储藏温度之间的函数关系是(且),若牛奶放在0℃的冰箱中,保鲜时间是200小时,而在1℃的温度下则是160小时,而在2℃的温度下则是128小时.(1)写出保鲜时间关于储藏温度(℃)的函数解析式;(2)利用(1)的结论,若设置储藏温度为3℃的情况下,某人储藏一瓶牛奶的时间为90至100小时之间,则这瓶牛奶能否正常饮用?(说明理由)21.将函数(且)的图象向左平移1个单位,再向上平移2个单位,得到函数的图象,(1)求函数的解析式;(2)设函数,若对一切恒成立,求实数的取值范围;(3)若函数在区间上有且仅有一个零点,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由交集定义求得结果.【详解】由交集定义知故选:B2、A【解析】的对称轴为,且,然后可得答案.【详解】因为的对称轴为,且所以若函数在定义域上的值域为,则故选:A3、D【解析】根据函数的奇偶性及函数值得符号即可得到结果.【详解】解:函数的定义域为R,即∴函数为奇函数,排除A,B,当时,,排除C,故选:D【点睛】函数识图常用的方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题4、A【解析】根据棱台、球、正方体、圆锥的几何性质,分析判断,即可得答案.【详解】①中若两个底面平行且相似,其余各面都是梯形,并不能保证侧棱延长线会交于一点,所以①不正确;②中若球面上不同的两点恰为球的某条直径的两个端点,则过此两点的大圆有无数个,所以②不正确;③中底面不一定是正方形,所以③不正确;④中圆锥的母线长相等,所以轴截面是等腰三角形,所以④是正确的.故选:A5、B【解析】求出f(x)的单调减区间A,令(,π)⊆A,解出ω的范围【详解】解:f(x)sin(ωx),令,解得x,k∈Z∵函数f(x)sin(ωx)(ω>0)在(,π)上单调递减,∴,解得ω2k,k∈Z∴当k=0时,ω故选:B【点睛】本题考查了三角函数的单调性与单调区间,考查转化能力与计算能力,属于基础题6、B【解析】利用可能平行判断,利用线面平行的性质判断,利用或与异面判断,与可能平行、相交、异面,判断.【详解】,,则可能平行,错;,,由线面平行的性质可得,正确;,,则,与异面;错,,,与可能平行、相交、异面,错,.故选B.【点睛】本题主要考查线面平行的判定与性质、线面面垂直的性质,属于中档题.空间直线、平面平行或垂直等位置关系命题的真假判断,除了利用定理、公理、推理判断外,还常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.7、A【解析】先由已知条件求出,然后利用公式求解即可【详解】因为,所以,在中,,所以,所以,所以这个弧田面积为,故选:A8、C【解析】根据函数解析式求得,根据函数的零点的判定定理求得函数的零点所在区间【详解】解:函数,定义域为,且为连续函数,,,,故函数的零点所在区间为,故选:【点睛】本题主要考查函数的零点的判定定理的应用,属于基础题9、D【解析】直接利用任意角的三角函数的定义求得点P的坐标【详解】设,由任意角的三角函数的定义得,,点P的坐标为故选D【点睛】本题考查任意角的三角函数的定义,是基础题10、C【解析】由终边位置可得结果.【详解】,终边落在第三象限,为第三象限角.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】求出二次函数的对称轴,即可得的单增区间,即可求解.【详解】函数的对称轴是,开口向上,若函数在区间单调递增函数,则,故答案为:.12、##【解析】由辅助角公式,正弦函数的性质求出,,再根据两角和的正切和公式,诱导公式求.【详解】(其中,),当时,函数取得最大值∴,,即,,所以,.故答案为:.13、【解析】由诱导公式将化为,再由,根据两角差的正弦公式,即可求出结果.【详解】因,所以,,又,,所以,,所以,,所以.故答案为【点睛】本题主要考查简单的三角恒等变换,熟记两角差的正弦公式以及诱导公式,即可求解,属于常考题型.14、【解析】两圆关于直线对称,则两圆的圆心关于直线对称,且两圆半径相同,由此求解即可【详解】由题,圆的标准方程为,即圆心,半径为,设对称圆的圆心为,则,解得,所以对称圆的方程为,故答案为:【点睛】本题考查圆关于直线对称的圆,属于基础题15、【解析】首先利用图像作出相邻两个面所成角,然后利用已知条件求出正四面体相邻两个面所成角的两边即可求解.【详解】由题意,四面体为正三棱锥,不妨设正三棱锥的边长为,过作平面,垂足为,取的中点,并连接、、、,如下图:由正四面体的性质可知,为底面正三角形的中心,从而,,∵为的中点,为正三角形,所以,,所以为正四面体相邻两个面所成角∵,∴易得,,∵平面,平面,∴,故.故答案为:.16、【解析】根据角的概念的推广即可直接求出答案.【详解】因为钟表的分针转了两圈,且是按顺时针方向旋转,所以钟表的分针转过的弧度数为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)日销售金额的最大值为900元,11月10日日销售金额最大【解析】(1)由日销售金额=每件的销售价格×日销售量可得;(2)利用二次函数的图像与性质可得结果.【详解】(1)设日销售额为元,则,所以即:(2)当时,,;当时,,故所求日销售金额的最大值为元,11月10日日销售金额最大.【点睛】本题主要考查了利用数学知识解决实际问题的能力,解题的关键是要把实际问题转化为数学问题,利用数学中二次函数的知识进行求解函数的最值.18、(1);(2)【解析】(1)首先应用向量数量积坐标公式求得,结合,求得,得到结果;(2)结合题的条件,利用同角三角函数关系式求得,结合角的范围以及(1)的结论,求得,再应用余弦和角公式求得的值,结合角的范围求得,得到结果.【详解】(1)因为,,所以因为,所以,即.(2)因为,,所以.因为,,所以.因为,所以,所以.因为,,所以,所以.【点睛】该题考查的是有关三角恒等变换的问题,涉及到的知识点有向量数量积坐标公式,同角三角函数关系式,余弦的和角公式,利用角的三角函数值的大小,结合角的范围求角的大小,属于简单题目.19、(1)(2)【解析】(1)做辅助线,利用勾股定理,计算BC的长度,然后得出C的坐标,结合圆的方程,即可得出答案.(2)利用直线垂直,斜率之积为-1,计算切线的斜率,结合点斜式,得到方程.【详解】(1)过C点做CDBA,联接BC,因为,所以,因为所以,所以圆的半径故点C的坐标为,所以圆的方程为(2)点B的坐标为,直线BC的斜率为故切线斜率,结合直线的点斜式解得直线方程为【点睛】本道题目考查了圆的方程的求解和切线方程计算,在计算圆的方程的时候,关键找出圆的半径和圆心,建立方程,计算切线方程,可以结合点斜式,计算方程,即可.20、(1)(2)可以正常饮用【解析】(1)利用题中条件,列出等式,求解即可;(2)利用(1)中结论,当时,即可计算出保鲜时间,判断即可【小问1详解】由题意可知解得【小问2详解】由(1)知温度为3℃时保鲜的时间为:小时故可以正常饮用21、(1)(2)(3)【解析】(1)由图象的平移特点可得所求函数的解析式;(2)求得的解析式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论