版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海洋泾中学2025届数学高一上期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数单调递增区间为A. B.C D.2.定义在上的偶函数满足当时,,则A. B.C. D.3.已知集合,,,则A. B.C. D.4.已知函数(,),若的图像的任何一条对称轴与x轴交点的横坐标均不属于区间,则的取值范围是()A. B.C. D.5.若角的终边过点,则A. B.C. D.6.设,,则a,b,c的大小关系是()A. B.C. D.7.设集合则().A. B.C. D.8.在正项等比数列中,若依次成等差数列,则的公比为A.2 B.C.3 D.9.若直线l1∥l2,且l1的倾斜角为45°,l2过点(4,6),则l2还过下列各点中的A.(1,8) B.(-2,0)C.(9,2) D.(0,-8)10.《九章算术》中,称底面为矩形且有一侧棱垂直于底面的四棱锥为阳马,如图,某阳马的三视图如图所示,则该阳马的最长棱的长度为()A. B.C.2 D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,点为锐角的终边与单位圆的交点,逆时针旋转得,逆时针旋转得逆时针旋转得,则__________,点的横坐标为_________12.已知函数则不等式的解集是_____________13.在日常生活中,我们会看到如图所示的情境,两个人共提一个行李包.假设行李包所受重力为G,作用在行李包上的两个拉力分别为,,且,与的夹角为.给出以下结论:①越大越费力,越小越省力;②的范围为;③当时,;④当时,.其中正确结论的序号是______.14.已知,则_______.15.如图,单位圆上有一点,点P以点P0为起点按逆时针方向以每秒弧度作圆周运动,5秒后点P的纵坐标y是_____________.16.点分别为圆与圆上的动点,点在直线上运动,则的最小值为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.年新冠肺炎仍在世界好多国家肆虐,并且出现了传染性更强的“德尔塔”变异毒株、拉姆达”变异毒株,尽管我国抗疫取得了很大的成绩,疫情也得到了很好的遏制,但由于整个国际环境的影响,时而也会出现一些散发病例,故而抗疫形势依然艰巨,日常防护依然不能有丝毫放松.在日常防护中,口罩是必不可少的防护用品.已知某口罩的固定成本为万元,每生产万箱,需另投入成本万元,为年产量单位:万箱;已知通过市场分析,如若每万箱售价万元时,该厂年内生产的商品能全部售完.利润销售收入总成本(1)求年利润与万元关于年产量万箱的函数关系式;(2)求年产量为多少万箱时,该口罩生产厂家所获得年利润最大18.计算(1)-(2)19.已知函数的图象如图(1)求函数的解析式;(2)将函数的图象向右平移个单位长度得到曲线,把上各点的横坐标保持不变,纵坐标变为原来的倍得到的图象,且关于的方程在上有解,求的取值范围20.(1)已知,求的值;(2)已知,,求的值.21.求函数的最小正周期
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】,所以.故选A2、B【解析】分析:先根据得周期为2,由时单调性得单调性,再根据偶函数得单调性,最后根据单调性判断选项正误.详解:因为,所以周期为2,因为当时,单调递增,所以单调递增,因为,所以单调递减,因为,,所以,,,,选B.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行.3、D【解析】本题选择D选项.4、C【解析】由已知得,,且,解之讨论k,可得选项.【详解】因为的图像的任何一条对称轴与x轴交点的横坐标均不属于区间,所以,所以,故排除A,B;又,且,解得,当时,不满足,当时,符合题意,当时,符合题意,当时,不满足,故C正确,D不正确,故选:C.【点睛】关键点睛:本题考查根据正弦型函数的对称性求得参数的范围,解决问题的关键在于运用整体代换的思想,建立关于的不等式组,解之讨论可得选项.5、D【解析】角的终边过点,所以.由角,得.故选D.6、C【解析】根据指数函数与对数函数的性质,求得的取值范围,即可求解.【详解】由对数的性质,可得,又由指数函数的性质,可得,即,且,所以.故选:C.7、D【解析】利用求集合交集的方法求解.【详解】因为所以.故选:D.【点睛】本题主要考查集合的交集运算,明确集合交集的含义是求解的关键,侧重考查数学运算的核心素养.8、A【解析】由等差中项的性质可得,又为等比数列,所以,化简整理可求出q的值【详解】由题意知,又为正项等比数列,所以,且,所以,所以或(舍),故选A【点睛】本题考查等差数列与等比数列的综合应用,熟练掌握等差中项的性质,及等比数列的通项公式是解题的关键,属基础题9、B【解析】由题意求出得方程,将四个选项逐一代入,即可验证得到答案.【详解】由题直线l1∥l2,且l1的倾斜角为45°,则的倾斜角为45,斜率由点斜式可得的方程为即四个选项中只有B满足方程.即l2还过点(-2,0).故选B【点睛】本题考查直线方程的求法,属基础题.10、B【解析】根据三视图画出原图,从而计算出最长的棱长.【详解】由三视图可知,该几何体如下图所示,平面,,则所以最长的棱长为.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、①.##0.96②.【解析】由终边上的点得,,应用二倍角正弦公式求,根据题设描述知在的终边上,结合差角余弦公式求其余弦值即可得横坐标.【详解】由题设知:,,∴,所在角为,则,∴点的横坐标为.故答案为:,.12、【解析】分和0的大小关系分别代入对应的解析式即可求解结论.【详解】∵函数,∴当,即时,,故;当,即时,,故;∴不等式的解集是:.故答案为:.13、①④.【解析】根据为定值,求出,再对题目中的命题分析、判断正误即可.【详解】解:对于①,由为定值,所以,解得;由题意知时,单调递减,所以单调递增,即越大越费力,越小越省力;①正确.对于②,由题意知,的取值范围是,所以②错误.对于③,当时,,所以,③错误.对于④,当时,,所以,④正确.综上知,正确结论的序号是①④.故答案为:①④.【点睛】此题考查平面向量数量积的应用,考查分析问题的能力,属于中档题14、【解析】直接利用二倍角的余弦公式求得cos2a的值【详解】∵.故答案为:15、##【解析】根据单位圆上点的坐标求出,从而求出,从而求出点P的纵坐标.【详解】因为位于第一象限,且,故,所以,故,所以点P的纵坐标故答案为:16、7【解析】根据题意,算出圆M关于直线对称的圆方程为.当点P位于线段上时,线段AB的长就是的最小值,由此结合对称的知识与两点间的距离公式加以计算,即可得出的最小值.【详解】设圆是圆关于直线对称的圆,
可得,圆方程为,
可得当点C位于线段上时,线段AB长是圆N与圆上两个动点之间的距离最小值,
此时的最小值为AB,
,圆的半径,
,
可得因此的最小值为7,
故答案为7.点睛:圆中的最值问题往往转化动点与圆心的距离问题,本题中可以转化为,再利用对称性求出的最小值即可三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)万箱【解析】(1)分,两种情况,结合利润销售收入总成本公式,即可求解(2)根据已知条件,结合二次函数的性质,以及基本不等式,分类讨论求得最大值后比较可得【小问1详解】当时,,当时,,故关于的函数解析式为小问2详解】当时,,故当时,取得最大值,当时,,当且仅当,即时,取得最大值,综上所述,当时,取得最大值,故年产量为万箱时,该口罩生产厂家所获得年利润最大18、(1);(2).【解析】(1)综合利用指数对数运算法则运算;(2)利用对数的运算法则化简运算.【详解】解:(1)原式;(2)原式【点睛】本题考查指数对数的运算,属基础题,在指数运算中,往往先将幂化为指数幂,然后利用指数幂的运算法则化简;在对数的运算中,要注意的运用和对数有关公式的运用.19、(1)(2)【解析】(1)由函数图象先求出,,进而求出,代入一个特殊点求出的值;(2)先求出图象变换后的解析式,再求出在的取值范围,进而求出的取值范围.【小问1详解】由图象最高点函数值为1,最低点函数值为,且,可知,函数最小正周期,所以,因为,所以,故,将点代入,可得:,因为,所以,所以.【小问2详解】由图象变换得:,当时,,,关于的方程有解,则.20、(1);(2)【解析】(1)根据题意,构造齐次式求解即可;(2)根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2021-2026年中国电竞俱乐部行业深度评估及投资规划建议报告
- 2025年中国燃气汽车行业市场全景监测及投资前景展望报告
- 2021-2026年中国数码产品盒市场竞争格局及投资战略规划报告
- 2024-2030年中国Hib疫苗行业市场调查研究及投资潜力预测报告
- 2025年中国焊接头螺栓行业市场发展前景及发展趋势与投资战略研究报告
- 2025年中国起重机工程机械行业市场深度分析及投资潜力预测报告
- 2020-2025年中国建筑石材行业市场调研分析及投资战略规划报告
- 2025年科学型电子计算器项目投资可行性研究分析报告
- 2025年中国脑深部电刺激设备市场规模预测及投资战略咨询报告
- 2025年职能接送管理系统行业深度研究分析报告
- 2025年湖北武汉工程大学招聘6人历年高频重点提升(共500题)附带答案详解
- 【数 学】2024-2025学年北师大版数学七年级上册期末能力提升卷
- GB/T 26846-2024电动自行车用电动机和控制器的引出线及接插件
- 辽宁省沈阳市皇姑区2024-2025学年九年级上学期期末考试语文试题(含答案)
- 2024年国家工作人员学法用法考试题库及参考答案
- 妊娠咳嗽的临床特征
- 国家公务员考试(面试)试题及解答参考(2024年)
- 《阻燃材料与技术》课件 第6讲 阻燃纤维及织物
- 2024年金融理财-担保公司考试近5年真题附答案
- 泰山产业领军人才申报书
- 高中语文古代文学课件:先秦文学
评论
0/150
提交评论