版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北省宜昌市高中名校下学期高三期中考试仿真卷数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.德国数学家莱布尼兹(1646年-1716年)于1674年得到了第一个关于π的级数展开式,该公式于明朝初年传入我国.在我国科技水平业已落后的情况下,我国数学家、天文学家明安图(1692年-1765年)为提高我国的数学研究水平,从乾隆初年(1736年)开始,历时近30年,证明了包括这个公式在内的三个公式,同时求得了展开三角函数和反三角函数的6个新级数公式,著有《割圆密率捷法》一书,为我国用级数计算π开创了先河.如图所示的程序框图可以用莱布尼兹“关于π的级数展开式”计算π的近似值(其中P表示π的近似值),若输入,则输出的结果是()A. B.C. D.2.已知四棱锥中,平面,底面是边长为2的正方形,,为的中点,则异面直线与所成角的余弦值为()A. B. C. D.3.已知向量与向量平行,,且,则()A. B.C. D.4.若复数满足,则对应的点位于复平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.设是虚数单位,若复数,则()A. B. C. D.6.以下三个命题:①在匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②若两个变量的线性相关性越强,则相关系数的绝对值越接近于1;③对分类变量与的随机变量的观测值来说,越小,判断“与有关系”的把握越大;其中真命题的个数为()A.3 B.2 C.1 D.07.若两个非零向量、满足,且,则与夹角的余弦值为()A. B. C. D.8.已知函数,则方程的实数根的个数是()A. B. C. D.9.函数的图象向右平移个单位得到函数的图象,并且函数在区间上单调递增,在区间上单调递减,则实数的值为()A. B. C.2 D.10.已知某几何体的三视图如图所示,其中正视图与侧视图是全等的直角三角形,则该几何体的各个面中,最大面的面积为()A.2 B.5 C. D.11.如果直线与圆相交,则点与圆C的位置关系是()A.点M在圆C上 B.点M在圆C外C.点M在圆C内 D.上述三种情况都有可能12.设等差数列的前n项和为,且,,则()A.9 B.12 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.(5分)已知,且,则的值是____________.14.已知椭圆的左右焦点分别为,过且斜率为的直线交椭圆于,若三角形的面积等于,则该椭圆的离心率为________.15.在中,角、、所对的边分别为、、,若,,则的取值范围是_____.16.已知,则_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)万众瞩目的第14届全国冬季运动运会(简称“十四冬”)于2020年2月16日在呼伦贝尔市盛大开幕,期间正值我市学校放寒假,寒假结束后,某校工会对全校100名教职工在“十四冬”期间每天收看比赛转播的时间作了一次调查,得到如图频数分布直方图:(1)若将每天收看比赛转播时间不低于3小时的教职工定义为“冰雪迷”,否则定义为“非冰雪迷”,请根据频率分布直方图补全列联表;并判断能否有的把握认为该校教职工是否为“冰雪迷”与“性别”有关;(2)在全校“冰雪迷”中按性别分层抽样抽取6名,再从这6名“冰雪迷”中选取2名作冰雪运动知识讲座.记其中女职工的人数为,求的分布列与数学期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828,18.(12分)如图,是正方形,点在以为直径的半圆弧上(不与,重合),为线段的中点,现将正方形沿折起,使得平面平面.(1)证明:平面.(2)三棱锥的体积最大时,求二面角的余弦值.19.(12分)已知数列为公差不为零的等差数列,是数列的前项和,且、、成等比数列,.设数列的前项和为,且满足.(1)求数列、的通项公式;(2)令,证明:.20.(12分)2019年6月,国内的运营牌照开始发放.从到,我们国家的移动通信业务用了不到20年的时间,完成了技术上的飞跃,跻身世界先进水平.为了解高校学生对的消费意愿,2019年8月,从某地在校大学生中随机抽取了1000人进行调查,样本中各类用户分布情况如下:用户分类预计升级到的时段人数早期体验用户2019年8月至2019年12月270人中期跟随用户2020年1月至2021年12月530人后期用户2022年1月及以后200人我们将大学生升级时间的早晚与大学生愿意为套餐支付更多的费用作比较,可得出下图的关系(例如早期体验用户中愿意为套餐多支付5元的人数占所有早期体验用户的).(1)从该地高校大学生中随机抽取1人,估计该学生愿意在2021年或2021年之前升级到的概率;(2)从样本的早期体验用户和中期跟随用户中各随机抽取1人,以表示这2人中愿意为升级多支付10元或10元以上的人数,求的分布列和数学期望;(3)2019年底,从这1000人的样本中随机抽取3人,这三位学生都已签约套餐,能否认为样本中早期体验用户的人数有变化?说明理由.21.(12分)数列的前项和为,且.数列满足,其前项和为.(1)求数列与的通项公式;(2)设,求数列的前项和.22.(10分)设函数()的最小值为.(1)求的值;(2)若,,为正实数,且,证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
执行给定的程序框图,输入,逐次循环,找到计算的规律,即可求解.【详解】由题意,执行给定的程序框图,输入,可得:第1次循环:;第2次循环:;第3次循环:;第10次循环:,此时满足判定条件,输出结果,故选:B.【点睛】本题主要考查了循环结构的程序框图的计算与输出,其中解答中认真审题,逐次计算,得到程序框图的计算功能是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.2、B【解析】
由题意建立空间直角坐标系,表示出各点坐标后,利用即可得解.【详解】平面,底面是边长为2的正方形,如图建立空间直角坐标系,由题意:,,,,,为的中点,.,,,异面直线与所成角的余弦值为即为.故选:B.【点睛】本题考查了空间向量的应用,考查了空间想象能力,属于基础题.3、B【解析】
设,根据题意得出关于、的方程组,解出这两个未知数的值,即可得出向量的坐标.【详解】设,且,,由得,即,①,由,②,所以,解得,因此,.故选:B.【点睛】本题考查向量坐标的求解,涉及共线向量的坐标表示和向量数量积的坐标运算,考查计算能力,属于中等题.4、D【解析】
利用复数模的计算、复数的除法化简复数,再根据复数的几何意义,即可得答案;【详解】,对应的点,对应的点位于复平面的第四象限.故选:D.【点睛】本题考查复数模的计算、复数的除法、复数的几何意义,考查运算求解能力,属于基础题.5、A【解析】
结合复数的除法运算和模长公式求解即可【详解】∵复数,∴,,则,故选:A.【点睛】本题考查复数的除法、模长、平方运算,属于基础题6、C【解析】
根据抽样方式的特征,可判断①;根据相关系数的性质,可判断②;根据独立性检验的方法和步骤,可判断③.【详解】①根据抽样是间隔相同,且样本间无明显差异,故①应是系统抽样,即①为假命题;②两个随机变量相关性越强,则相关系数的绝对值越接近于1;两个随机变量相关性越弱,则相关系数的绝对值越接近于0;故②为真命题;③对分类变量与的随机变量的观测值来说,越小,“与有关系”的把握程度越小,故③为假命题.故选:.【点睛】本题以命题的真假判断为载体考查了抽样方法、相关系数、独立性检验等知识点,属于基础题.7、A【解析】
设平面向量与的夹角为,由已知条件得出,在等式两边平方,利用平面向量数量积的运算律可求得的值,即为所求.【详解】设平面向量与的夹角为,,可得,在等式两边平方得,化简得.故选:A.【点睛】本题考查利用平面向量的模求夹角的余弦值,考查平面向量数量积的运算性质的应用,考查计算能力,属于中等题.8、D【解析】
画出函数,将方程看作交点个数,运用图象判断根的个数.【详解】画出函数令有两解,则分别有3个,2个解,故方程的实数根的个数是3+2=5个故选:D【点睛】本题综合考查了函数的图象的运用,分类思想的运用,数学结合的思想判断方程的根,难度较大,属于中档题.9、C【解析】由函数的图象向右平移个单位得到,函数在区间上单调递增,在区间上单调递减,可得时,取得最大值,即,,,当时,解得,故选C.点睛:本题主要考查了三角函数图象的平移变换和性质的灵活运用,属于基础题;据平移变换“左加右减,上加下减”的规律求解出,根据函数在区间上单调递增,在区间上单调递减可得时,取得最大值,求解可得实数的值.10、D【解析】
根据三视图还原出几何体,找到最大面,再求面积.【详解】由三视图可知,该几何体是一个三棱锥,如图所示,将其放在一个长方体中,并记为三棱锥.,,,故最大面的面积为.选D.【点睛】本题主要考查三视图的识别,复杂的三视图还原为几何体时,一般借助长方体来实现.11、B【解析】
根据圆心到直线的距离小于半径可得满足的条件,利用与圆心的距离判断即可.【详解】直线与圆相交,圆心到直线的距离,即.也就是点到圆的圆心的距离大于半径.即点与圆的位置关系是点在圆外.故选:【点睛】本题主要考查直线与圆相交的性质,考查点到直线距离公式的应用,属于中档题.12、A【解析】
由,可得以及,而,代入即可得到答案.【详解】设公差为d,则解得,所以.故选:A.【点睛】本题考查等差数列基本量的计算,考查学生运算求解能力,是一道基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由于,且,则,得,则.14、【解析】
由题得直线的方程为,代入椭圆方程得:,设点,则有,由,且解出,进而求解出离心率.【详解】由题知,直线的方程为,代入消得:,设点,则有,,而,又,解得:,所以离心率.故答案为:【点睛】本题主要考查了直线与椭圆的位置关系,三角形面积计算与离心率的求解,考查了学生的运算求解能力15、【解析】
计算出角的取值范围,结合正弦定理可求得的取值范围.【详解】,则,所以,,由正弦定理,.因此,的取值范围是.故答案为:.【点睛】本题主要考查了正弦定理,正弦函数图象和性质,考查了转化思想,属于基础题.16、【解析】
对原方程两边求导,然后令求得表达式的值.【详解】对等式两边求导,得,令,则.【点睛】本小题主要考查二项式展开式,考查利用导数转化已知条件,考查赋值法,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)列联表见解析,有把握;(2)分布列见解析,.【解析】
(1)根据频率分布直方图补全列联表,求出,从而有的把握认为该校教职工是否为“冰雪迷”与“性别”有关.(2)在全校“冰雪迷”中按性别分层抽样抽取6名,则抽中男教工:人,抽中女教工:人,从这6名“冰雪迷”中选取2名作冰雪运动知识讲座.记其中女职工的人数为,则的可能取值为0,1,2,分别求出相应的概率,由此能求出的分布列和数学期望.【详解】解:(1)由题意得下表:男女合计冰雪迷402060非冰雪迷202040合计6040100的观测值为所以有的把握认为该校教职工是“冰雪迷”与“性别”有关.(2)由题意知抽取的6名“冰雪迷”中有4名男职工,2名女职工,所以的可能取值为0,1,2.且,,,所以的分布列为012【点睛】本题考查独立性检验的应用,考查离散型随机变量的分布列、数学期望的求法,考查古典概型、排列组合、频率分布直方图的性质等基础知识,考查运算求解能力,属于中档题.18、(1)见解析(2)【解析】
(1)利用面面垂直的性质定理证得平面,由此证得,根据圆的几何性质证得,由此证得平面.(2)判断出三棱锥的体积最大时点的位置.建立空间直角坐标系,通过平面和平面的法向量,计算出二面角的余弦值.【详解】(1)证明:因为平面平面是正方形,所以平面.因为平面,所以.因为点在以为直径的半圆弧上,所以.又,所以平面.(2)解:显然,当点位于的中点时,的面积最大,三棱锥的体积也最大.不妨设,记中点为,以为原点,分别以的方向为轴、轴、轴的正方向,建立如图所示的空间直角坐标系,则,设平面的法向量为,则令,得.设平面的法向量为,则令,得,所以.由图可知,二面角为锐角,故二面角的余弦值为.【点睛】本小题主要考查线面垂直的证明,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.19、(1),(2)证明见解析【解析】
(1)利用首项和公差构成方程组,从而求解出的通项公式;由的通项公式求解出的表达式,根据以及,求解出的通项公式;(2)利用错位相减法求解出的前项和,根据不等关系证明即可.【详解】(1)设首项为,公差为.由题意,得,解得,∴,∴,∴当时,∴,.当时,满足上式.∴(2),令数列的前项和为.两式相减得∴恒成立,得证.【点睛】本题考查等差数列、等比数列的综合应用,难度一般.(1)当用求解的通项公式时,一定要注意验证是否成立;(2)当一个数列符合等差乘以等比的形式,优先考虑采用错位相减法进行求和,同时注意对于错位的理解.20、(1)(2)详见解析(3)事件虽然发生概率小,但是发生可能性为0.02,所以认为早期体验用户没有发生变化,详见解析【解析】
(1)由从高校大学生中随机抽取1人,该学生在2021年或2021年之前升级到,结合古典摡型的概率计算公式,即可求解;(2)由题意的所有可能值为,利用相互独立事件的概率计算公式,分别求得相应的概率,得到随机变量的分布列,利用期望的公式,即可求解.(3)设事件为“从这1000人的样本中随机抽取3人,这三位学生都已签约套餐”,得到七概率为,即可得到结论.【详解】(1)由题意可知,从高校大学生中随机抽取1人,该学生在2021年或2021年之前升级到的概率估计为样本中早期体验用户和中期跟随用户的频率,即.(2)由题意的所有可能值为,记事件为“从早期体验用户中随机抽取1人,该学生愿意为升级多支付10元或10元以上”,事件为“从中期跟随用户中随机抽取1人,该学生愿意为升级多支付10元或10元以上”,由题意可知,事件,相互独立,且,,所以,,,所以的分布列为0120.180.490.33故的数学期望.(3)设事件为“从这1000人的样本中随机抽取3人,这三位学生都已签约套餐”,那么.回答一:事件虽然发生概率小,但是发生可能性为0.02,所以认为早期体验用户没
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《酒店新员工培训》课件
- 《教育本质》课件
- 《词类句子成分》课件
- 急性风湿热的健康宣教
- 儿童牙病的健康宣教
- 垂体性闭经的健康宣教
- 孕期水样分泌物的健康宣教
- 《例解决问题》课件
- 武汉大学金融工程学课件-金融工程
- 肾上腺髓质增生的临床护理
- 国开电大《亲子关系与亲子沟通》形考+大作业
- (2024年)中国传统文化介绍课件
- 2024年度武汉天河国际机场免税店经营合同3篇
- 四川省南充市2023-2024学年高一上学期期末考试 政治 含解析
- 【MOOC】土木工程制图-同济大学 中国大学慕课MOOC答案
- 餐厅服务培训
- 南水北调江苏水源公司2024年下半年校园招聘易考易错模拟试题(共500题)试卷后附参考答案
- 民法典知识考试试题及答案
- 《冠心病》课件(完整版)
- 2024年公安机关人民警察高级执法资格考试试卷
- 人教版5年级上册音乐测试(含答案)
评论
0/150
提交评论